
Analyzing Viscuit Programs Crafted by Kindergarten Children
Takeshi Watanabe
watanabe@viscuit.com

University of Electro-Communications
Digitalpocket LLC.

Tokyo, Japan

Yuriko Nakayama
kagawafujimi@kdp.biglobe.ne.jp
Kagawa-fujimigaoka Kindergarten

Kanagawa, Japan

Yasunori Harada
hakase@viscuit.com
Digitalpocket LLC.
Kanagawa, Japan

Yasushi Kuno
y-kuno@uec.ac.jp

University of Electro-Communications
Tokyo, Japan

ABSTRACT
Viscuit is a programming language developed in Japan. With Vis-
cuit, children can move and change multiple pictures on the screen
using picture rewriting rules. Viscuit’s distinguishing feature is
that the program is expressed solely with pictures and their lay-
outs without any letters. Therefore, Viscuit is very suitable for
pre-school children. As an experiment, we carried out regular pro-
gramming lessons using Viscuit in a kindergarten for one year in
2017. Through these lessons, we taught four Viscuit techniques. In
this report, we analyze the programs made by 5-6 year old children
in the final lesson of the 13 lessons. Our research question is how
kindergarten children make Viscuit programs to express their ideas.
We analyzed the kinds of programs children made to express their
ideas by applying what they have learned in the previous 12 lessons.
We let children make programs based on the operetta in which they
were going to perform in the kindergarten graduation ceremony. As
a result, 85.7% of children made valid programs and used multiple
programming techniques effectively.

CCS CONCEPTS
• Social and professional topics→ K-12 education; Computa-
tional thinking; • Software and its engineering → Visual lan-
guages.

KEYWORDS
viscuit, kindergarten, programming education, visual language,
computational thinking
ACM Reference Format:
Takeshi Watanabe, Yuriko Nakayama, Yasunori Harada, and Yasushi Kuno.
2020. Analyzing Viscuit Programs Crafted by Kindergarten Children. In Pro-
ceedings of the 2020 International Computing Education Research Conference
(ICER ’20), August 10–12, 2020, Virtual Event, New Zealand. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3372782.3406253

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’20, August 10–12, 2020, Virtual Event, New Zealand
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7092-9/20/08. . . $15.00
https://doi.org/10.1145/3372782.3406253

1 INTRODUCTION
Nowadays, we recognize the importance of programming education
for young children [19, 21, 27, 28], and we needed to reveal to what
extent they can understand and make programs [2, 5, 30]. Many
studies on programming education for preschoolers report that
children can make programs and are motivated enough when they
perform programming [6, 22, 23]. However, there are few studies
analyzing quantitatively what kind of programs children make and
whether children understand what they are doing [5, 10, 36].

We designed a series of curricula to teach programming using
Viscuit [12, 33], which adopts the picture rewriting rules to make
programs. Through the lessons, we taught four Viscuit techniques.
We taught this series of lessons to kindergarten children for one
year. The participants were 28 5-6 year old children.

Our research question is how the children who learned program-
ming in Viscuit express their ideas in the final lesson of the series of
13 lessons. In the final lesson, children created programs that intro-
duce the operetta for their parents. They were going to perform this
operetta at the kindergarten graduation ceremony. We expected
the children to use effectively the programming techniques that
they were taught. We analyzed how they applied the techniques to
their programs.

Our analysis confirmed that most children were able to create
programs and effectively express the story of the operetta by creat-
ing at least one successful work.

Section 2 introduces related work. Section 3 describes the fea-
tures of the visual programming language Viscuit. Section 4 de-
scribes the research methods and the lessons that were conducted.
Section 5 presents the results of analyzing the programs created by
the children. Section 6 discusses the results, and Section 7 summa-
rizes this report.

2 RELATEDWORK
There is a good deal of research on the importance of experiencing
computer programming from an early age. Seymour Papert, one of
the developers of the educational programming language Logo, said
that programming could be a powerful tool for children to express
their ideas and help them learn [24]. Nowadays, various tools for
teaching programming to young children exist [8, 15, 17, 29, 32, 33],
and ways of measuring the effect of learning programming are
being explored [13, 20].

https://doi.org/10.1145/3372782.3406253
https://doi.org/10.1145/3372782.3406253

A lot of studies show that preschool children are able and mo-
tivated to make programs [6, 7, 16, 18, 22, 23]. However, there are
few studies about what kind of programs children can make and in
which way [28, 36].

Louise et al. researched the programs made by kindergarten
children whose ages were 4.4 years to 6.6 years; the mean age
was 5.6. They divided the children into cognitive stages [11] and
figured out what kind of programs children at each stage could
make[10]. In this study, it is confirmed that children at each stage
of cognitive development varied significantly in their approaches
to programming. When using CHERP [4, 9], which is designed
specifically for around 4-6 year old children to control robots built
from LOGO robotics construction kits, the pre-operational stage
children sometimes showed difficulties in making programs, while
the concrete operational stage children could explore operating the
robot by themselves.

Marina et al. executed a trial consisting of six lessons [5]. They
analyzed the understanding of programming of children through
recording their processes and examining the programs made by
them using CHERP [4, 9]. The ages of the participants were 4-6
years. In this study, many children showed high understanding
over the course of the first half of the curriculum. However, when
it came to the difficult part, the number of children who could not
understand increased. Specifically, it was the part in which the idea
of conditional programs was taught.

Even for elementary school children, the idea of conditional
programs seems to be difficult. Cecilia et al. compared preschool
and elementary school children when learning computer science
concepts through multi-language robot programming [21]. They
reported that children aged 5-6 showed difficulties in learning “con-
ditional programs”, but they seemed to understand “sequence”,
“loop”, and “parameter”. Linda et al. studied programs made from
scratch on the Internet [30]. As a result, the “Collide”, “Interact”, and
“Scoring” that are needed to make a conditional programs were used
less frequently than “Looks”, “Motion”, and “Conversate’, which
could be made without a conditional programs. Therefore, it seems
that the concept of conditional programs is difficult for preschool
children.

Regarding the programming language adopting the picture rewrit-
ing rule, there are few studies about preschool children. We used
Viscuit in this research, and Viscuit adopts the picture rewriting
rule [1, 3, 25, 31]. We reported that most of the children aged 5 to
6 who took programming lessons using Viscuit at a kindergarten
could move the prepared pictures in the proper direction [35, 36].

In almost all studies, developing computational thinking [37, 38]
(CT) was put forward as one of the major purposes of teaching
programming to preschool children. Abstraction was introduced
as the key of CT [38]. As we are going to explain in the following
chapter, less abstraction is needed to make programs in Viscuit.
However, we consider that children have become familiar with
computers through these lessons.

Alexander et al. describe the computational thinking process
(CTP) through which people express their ideas using a computer
[26]. The CTP consists of 1) problem formulation, 2) solution ex-
pression, 3) solution execution and evaluation, and then go back to
1). In addition, they put forward the concept of the computational
thinking tool (CTT) that supports and integrates the three stages

Figure 1: Viscuit interface

of the CTP. For CTT, minimizing unnecessary complexity, such
as writing long lines of code, is the important thing. We consider
that children in this study definitely follow this process as well
when they crafted programs without writing code. In process 1)
they find the subject matter that they wanted to make and imagine
the movement, 2) they make programs, 3) they make sure of the
results of their programs and work on other tasks, and then go back
to 1).

We summarize those findings as follows:
• We found plenty of researches focusing on understanding
robots but few researches focusing on the picture rewriting
rule.

• We realized that conditional programs are difficult for chil-
dren.

• We consider that children can learn CT without writing
complex code through CTP.

We will clarify how children show their understanding and how
they adopt the standard concept when using Viscuit through objec-
tively analyzing the programs created by them.

3 VISUAL PROGRAMMING LANGUAGE
VISCUIT

Viscuit [12, 33, 34] is a programming language developed by Ya-
sunori Harada, who is the third author. With Viscuit, one can move
and change multiple pictures on the screen using picture rewriting
rules [1, 3, 25, 31]. Its distinguishing feature is that the program is
expressed solely with pictures and their layouts; no letters are used
at all. Thus, Viscuit is very suitable for preschool children.

Figure 1 shows howViscuit programs are created. (1) Pre-supplied
or originally drawn pictures are placed on the stage (light blue area),
(2) an empty rule (looks like eyeglasses) is placed in the gray middle
area, (3) pictures here represented by triangles are dragged inside
both circles of the rule, and (4) this instantly makes the pictures
move on the stage. In the case of this figure, three triangles move
toward the bottom left because the layout of the triangle in each
circle shows that the triangle in the right circle has been moved
from the position of the triangle in the left circle to the bottom
left of the right triangle. The rule made in process (2) represents a
change from the properties in the left circle as the before state to
the properties in the right circle as the after state.

Figure 2: Examples of rules in Viscuit

Figure 3: Examples of conditional programs in Viscuit

Figure 2 illustrates how to use the rule in four different ways.
Users could make pictures move by putting the same pictures in the
left and right circle. The distance between the position of the picture
in the left circle and that in the right circle reflects the direction
and speed. If the distance is great, the speed increases (Figure 2,
upper left). “Random Move” is created by making multiple rules
that have the same picture in the left circle (Figure 2, upper right).
“Change of Picture” is created when the picture put in each circle is
different; the picture in the left circle changes to the picture in the
right circle (Figure 2, lower left). “Rotation” is created by rotating
one picture (Figure 2, lower right).

Conditional programs is made by putting more than two pictures
in the left circle of the rule. The pictures on the stage will move
immediately if you put the same picture in the left circle and the
right circle. However, if you put multiple pictures in the left circle,
it means “if there are pictures positioned in the layout of the left
circle, then the pictures of the left circle change to the pictures of
the right circle”. For example, in Figure 3, in the second rule from
top, the left circle of the rule means if a butterfly and a tulip are
positioned in the layout of the left circle, the butterfly goes upwards,

Figure 4: Recital Time Watching Viscuit Land

Figure 5: Examples of rules in expert mode

and the tulip changes to the blooming tulip as the layout of the
right circle.

Viscuit has two modes: “novice mode” and “expert mode”. In
“novice mode”, the program will not run unless the number of pic-
tures in the right circle is equal to that in the left circle. The reason
for the limitation of the number of pictures is that increasing or
decreasing the number of pictures is against the law of conservation
of mass. Therefore, this mode is easy for “novices” to understand.
In addition, when using “novice mode”, many pictures being moved
by individual programs can be gathered onto a single large screen
called “Viscuit Land” (Figure 4). ”We used Viscuit Land a lot in our
lessons. In the lessons, children shared the common theme and
background provided by the teacher by means of Viscuit Land dur-
ing the free production time. Each child draws their own pictures,
programs the movement of those pictures, and then presses the
“save” button to put their pictures onto the shared Viscuit Land.

In “expert mode”, a rule can be run even if the number of pictures
in each circle is not the same. Therefore, the user can increase or
decrease the number of pictures on the stage using the rules. In
addition, the user could implement “interaction” by using the finger
mark. In Figure 5, the rule means if you touch the egg, it will break,
and a chick will appear. In that way, the user could make games by
combining various rules (Figure 6). However, we considered that
“expert mode” is too difficult for preschool children, so we did not
teach this mode to them.

Figure 6: The Shooting game made by Viscuit

4 RESEARCH AND CONDUCTED LESSONS
4.1 Subjects and contents of lessons
The summary of the experiment is as follows.

• Teacher: Kindergarten teacher
• Subjects: 28 5-6 year old children
• Duration of lesson: 40 mins
• Task: to make an introduction for the operetta
• Analysis: programs made by children
• Device: iPad mini
• Year: 2017

The kindergarten obtained consent for the research from all the
parents. The backgrounds of the families of the participants were
not special; they were ordinary families.

All the lessons lasted 40 minutes, but the composition of the
final lesson (L13) was different from that of the previous lessons.
L1 to L12 consisted of some practice tasks (Figure 1) in the first
half and a free production time based on each practice and review
using “Viscuit land” in the second half. L13 contained only free
production and the review.

During L13, the children drew pictures with Viscuit with the
theme of creating a work introducing the Japanese operetta “The
Journey of a Cat Family”. It was going to be performed at the
kindergarten graduation ceremony for their parents. The story is
that a cat family found a vase that indicates the place where a large
amount of treasure is hidden, and then the cat family goes on a
journey by ship to look for the treasure. However, they encountered
a group of Vikings and the Vikings require the vase. Then the son
of the family who was holding the vase fell into the sea. The father
then jumped into the sea to help the son. Then, all the members of
the family jumped into the sea to help the father. After that, the
Vikings were impressed by the bonds of the family, so they also
jumped into the sea to help the family. Lastly, all of them survived,
but they lost the vase. However, they recognized the importance of
family.

We created a curriculum to teach programming in Viscuit. Ta-
ble 1 shows the contents of the lessons. “No.” means the number
of lessons implemented, and “Date” means the date on which the

Table 1: Implemented Lessons in School Year 2017

No. Content Date
L1-L4 Straight Move (M) May 11, 25, Jun. 8, 22
L5-L6 Random Move (RM) Jul. 13, Oct. 26
L7-L9 Change of Picture (CP) Nov. 9, 30, Dec. 14
L10-L12 Rotation (R) Jan. 11, 18, 25, 2018
L13 Free Production Feb. 8

Figure 7: Lesson Examples

lessons were implemented in 2017. Through this curriculum, chil-
dren learned four Viscuit programming techniques, “Straight Move
(M)”, “RandomMove (RM)”, “Change of Picture (CP)”, and “Rotation
(R)” as “Content”.

As described in Chapter 2, the concept of conditional programs
seems to be difficult for kindergarten children to learn [5, 10, 21].
We also felt in the same way in the lessons that we conducted in
2016. In 2016, half of the children, who were first grade elementary
school children at that time, could not understand the conditional
programs using two pictures (Figure 3). In this series of lessons,
we aimed to get almost all of the children to be able to understand
programming. Therefore, we omit the conditional programs from
our curriculum.

We want them to know at least the following programming
features:

(1) When you make programs, then the picture starts to move.
(2) If you make programs in the wrong way, the computer will

run in the wrong way.
(3) The rule will be applied to the multiple pictures on the screen.

We consider the first and third features to be abstraction features
because they make pictures move indirectly using rules.

In addition, in the previous year, we found that children enjoyed
the programming if we did not raise the level of programming every
lesson. They enjoyed learning just by changing the appearances of
the pictures appearing in each practice. For example, we prepared
pictures of animals in the sea to teach them Straight Move in the
first lesson. In the second lesson, we changed them to animals in
the sky. Then, nobody complained about that repetition, and they
enjoyed the lesson. Therefore, we decided not to go quickly but
keep to a speed such that the slowest children could keep up with
us to make all of them understand.

The lesson was conducted by two kindergarten teachers. One
of them was in charge of teaching Viscuit, and the other was in
charge of the regular class (Figure 7).

Table 2: Information in JSON files

Subject Focus Data
File Size and No. of pictures placed

complexity of programs No. of pictures drawn
No. of rules made

Rule Type of rule Difference of pictures
Rotate or not
Existence of Rules
Starting same picture

Speed, Coordinates
direction of pictures placed

4.2 Collecting children’s programs
All programs made with the Viscuit system are automatically saved
in the JSON [14] format in the Viscuit online server. The programs
were recorded when the children pressed the “save” button. After
pressing “save”, the screen was cleared, the children could start
their new work, and the work saved appears on the “Viscuit Land”
immediately. The number of works in a lesson varied depending
on the child. Every time they saved their work, a JSON file was
generated. Every JSON file includes the ID of the tablet from which
the server received the Viscuit program. We recorded the tablet ID
of each child and used this record to associate each JSON file with
the child.

We analyzed programs based on the “Type of rules”. In addition,
we associated the child with the “Type of rules” he or she made
to clarify what kind of programs each child made. In addition to
those JSON file data, the authors confirmed what kind of pictures
they drew by watching each work. We also associated the pictures
and the “Type of rules” to determine whether they could program
effectively.

Table 2 shows the information that can be obtained from a JSON
file.

5 PROGRAM ANALYSIS
5.1 Programs
The kindergarten children often used multiple rules for a single
picture when they made programs. Therefore, we analyzed their
works based on each picture. For example, if picture A was being
moved using two or more rules, the picture and the rules were
counted as one set of rules.

In L13 (the final lesson), the numbers of the various entities are
shown below.

• Number of children: 28
• Number of programs (JSON): 128
• Number of rules in each file: 206
• Number of valid rules: 196
• Number of pictures: 233
• Number of sets of rules: 152

5.2 What children expressed in programs
5.2.1 Types of techniques used by children. The number of sets of
rules was 152. The 152 sets of rules were categorized according

Table 3: Number of categorized rules

Tech Number % p-value
R 51 33.6% p < 0.05
M 49 32.2% p < 0.05

CP (repeating) 33 21.7% p > 0.05
CP (1 way) 10 6.6%

RM 7 4.6% p < 0.05
Con 2 1.3% Not executed

to the five techniques they realize: “Straight Move (M)”, “Random
Move (RM)”, “Change of Picture (CP)”, “Rotation (R)”, and “Condi-
tional programs (Con)”. Those techniques were learned by children
throughout the year (Table 1), except for “Conditional programs
(Con)”, which was not taught, but one child used it. Figure 3 shows
the results of the classification. Here, “1 Way” in “Change of Pic-
ture” is the rule for a one-way change for changing A to B with no
further changes. During the lessons, we taught “Change of Picture”
as a means of creating repeating changes (Figure 2). Therefore, we
judged a “1 Way” change as a mistake and excluded it from the
analysis, although these one-way changes were tabulated. Regard-
ing “Conditional programs”, it was surprising that there was a child
who applied this technique even though it was not taught.

We executed the binomial test on all of the techniques except
for “Conditional programs”. We assumed that the probability of the
technique the children applied was the same as the null hypothesis.
Here, we regarded “repeating” and “1 way” as the same technique
of “Change of Picture”.

We confirmed that “Rotation” and “Straight move” were selected
more significantly; however, “Change of Picture” was not applied
more significantly. With respect to “Rotation” and “Straight Move”,
we guessed they were easier to use than “Change of Picture”, so
the children applied this technique more than “Change of Picture.
Regarding “Random Move”, we assumed that children did not use
“RandomMove” enough to express their ideas in L5 and L6 (Table 1).
This rule was only taught for two days although other content was
taught more than three times. Also, they were on summer vacation
between these two days.

Table 4 shows which pictures were used as motifs in each of
the 152 sets of rules. Of the pictures adopted as motifs, “Cat” was
the most common, followed by “?”, “Wave”, “Vase”, and “Ship”. “?”
means that the authors could not identify the picture. “Others”
contains those pictures that we could identify, but the occurrence
was only once or twice. We judged that many of the motifs were
selected intentionally because those motifs actually appeared in the
operetta. We marked with “*” the name of pictures that appeared in
the operetta. On the other hand, there were 32 pictures classified as
“?”. This represents 21.05% of the 152 sets of rules. In addition to the
total number, the number of sets of rules for each picture is shown.
The most adopted technique for each set is marked in Table 4.

We found that the number of techniques applied to each pic-
ture was different. We presumed that the reason for the differences
between those pictures is caused by the properties of each pic-
ture. For example, “Wave” would undulate and “Ship” would go
straight. We analyzed the details of each set of rules separately for

Table 4: pictures and Techniques

Picture Total M R CP R CON
Cat* 38 12 1 13* 7 0
? 32 10 0 6 12* 0

Wave* 21 4 1 0 16* 0
Vase* 13 3 1 4* 4* 0
Ship* 12 6* 3 1 2 0
Star 4 0 0 0 4* 0

Candy 3 0 0 1 2* 0
Fish* 3 3* 0 1 0 0
Other 26 13* 1 8 4 2

Table 5: Pictures and Directions

Direction Picture Total U D L R
Yes Ship* 6 0 0 6 0

Fish* 4 0 0 1 3
Cat* 3 0 0 1 2

Vehicle 2 0 0 1 1
Human 1 0 0 0 1
Wave* 1 0 0 1 0

None ? 10 1 1 5 3
Cat* 9 1 0 3 5
Vase* 3 0 0 0 3

Part of body 2 0 0 0 2
Wave* 2 0 0 1 1
Other 6 4 0 1 1

Figure 8: Examples of Linear Move

“Straight Move”, “Random Move”, “Change of Picture”, “Rotation”,
and “Conditional programs”.

5.2.2 Straight move. There were a total of 49 rules for “Straight
Move”. Table 5 shows the associated pictures and directions of
movement for those rules. “U” stands for “Upwards”, “D” stands
for “Downwards”, “L” stands for “Leftwards”, and “R” stands for
“Rightwards”.

Some of the pictures drawn by children had direction. We could
recognize whether the particular picture had direction by consid-
ering whether 1) the direction of the head and the direction of
movement match, 2) we could determine whether the direction was
vertical or horizontal, and 3) we could determine the direction from
the relationship of the picture with other pictures.

Figure 9: Examples of Random Move

Table 6: Pictures and Changing parts

Picture Total Expression Whole Color Other
Cat* 13 10 2 1 0
? 6 0 5 1 0

Vase* 4 0 0 3 1
Face 2 2 0 0 0
Others 8 0 3 5 0

Figure 8 shows the examples. In the rule containing the picture
of ship in the left figure, we applied the way of 2) to recognize the
direction. The ship must go right or left because it was written from
the point of view of the side. In the right figure, we applied the way
of 3) to recognize the direction. We could determine the direction
of the picture by using the written ground line. We could recognize
that it must be horizontal. For 1), the rule like shown at the upper
left in Figure 2 was applied.

Of the 49 pictures, 17 indicated the direction of movement, while
the remaining 32 pictures did not indicate any direction of move-
ment. In fact, all 17 directional pictures were moved in the proper
direction.

5.2.3 Randommove. “RandomMove” had a small number of adopted
sets of rules, seven in total. Looking at each work in detail, three of
the seven were movement of ships swaying and rolling, with the
waves moving (Figure 9). We suppose that the swaying and rolling
ships represent the scene in the operetta, in which the cat family
experienced big waves. The other four sets included a picture of
the cat, wave, ghost, and vase. The cat and the ghost were made
of multiple linear movement rules. The wave and the vase were
accompanied by a rotational movement. When we taught “Random
Move” during the lessons, we used only “Straight Move”. We did not
teach programs that combine “Random Move” and “Rotation”. In
spite of this situation, we found that some children made programs
combining techniques they had learned by themselves.

5.2.4 Change of picture. “Change of Picture” had a total of 42 sets
of rules. Nine of these were 1-way changes, with picture A changing
to picture B. Thirty-three were repetition: changing from A to B
and then from B to A.

Table 6 shows the types of pictures to which “Change of Picture”
was applied. The motifs used most were “Cat” and “?”. When we
checked how the “Cat”s were changed, the number of expressions
was the most, at ten.

Figure 10: Example of cat changing face

Table 7: Pictures and Rotations

Picture Total Same Place Small Large
Wave* 16 6 4 6

? 12 6 3 3
Cat* 7 4 3 0
Star 4 1 2 1
Vase* 4 4 0 0
Candy 2 1 1 0
Ship* 2 1 0 1
Other 4 3 1 0

Figure 10 shows examples of sets of rules in which the “Cat”
changes its facial expression. Two similar pictures were drawn, and
the facial expression was changed by changing certain parts of the
pictures. We suppose that these “Cat”s were crafted to express the
cat family who appear in the operetta.

In regard to “Vase”, the number of “Vase”s changing their color
was 3, and 1 “Vase” was changing its shape. In the operetta, there
is a scene in which the cat father found a map of treasure on the
surface of the vase when he cleaned the dirty vase. We supposed
that the “Vase” changing color means that the “Vase” has been
cleaned.

5.2.5 Rotation. Therewere 51 sets of rules for the “Rotation” (Table
7). There were 3 types of rotation: large circle “Rotation”, small circle
“Rotation”, and rotation in the same place. “Wave” was adopted for
“Rotation” the most, 16 times. The number of large circles rotating
was the highest, the same as those rotating in the same place. In
addition, other pictures did not have the large circles rotating like
“Wave”. We speculated that the rotating “Wave” in the large circle
represented the big waves that the cat family encountered in the
operetta.

5.2.6 Conditional programs. We found that two works applied
“Conditional programs”. One of them showed a cat carrying a fishing
rod, and the other showed a Viking riding a ship (Figure 11). These
works were composed of two pictures. These two pictures move
together but do not move separately. They move only when the
two pictures are put as the layout in the left circle of the rule. They
move because the position of the pictures in each of the two circles
is the same. Both of them were made by the same child.

Figure 11: Example of cat conditional programs

Table 8: Group details

Num of Tech Total Technique Num
2 16 (57.14%) M+R 8 (28.57%)

R+CP 4 (14.29%)
M+CP 2 (7.14%)
RM+R 1 (3.57%)
CP+Con 1 (3.57%)

3 6 (21.43%) M+CP+R 5 (17.84%)
M+CP+RM 1 (7.14%)

1 4 (14.29%) M 1 (3.57%)
RM 1 (3.57%)
CP 2 (7.14%)

4 2 (7.14%) M+CP+RM+R 2 (7.14%)

5.3 Numbers and types of programs made by
children

We counted the number of sets of rules created by each child. All
children made at least one work. The highest number of rules was
13 sets. The average number of sets of rules made by children was
5.43 sets.

Table 8 shows the number of children showing which techniques
they applied. “M” stands for “Straight Move”, “RM” stands for “Ran-
dom Move”, “CP” stands for “Change of Picture”, “R” stands for
“Rotation”, and “Con” stands for “Conditional programs”.

16 children used two techniques, especially “Straight Move” and
“Rotation”. Four children used only one technique. Two children
used all techniques that were taught. We assume that these results
occurred because “Straight Move” and “Rotation” were the easiest
techniques.

We confirmed that many works adopted the programs for pic-
tures effectively. However, the number of sets of rules varied greatly
among children. Therefore, there was a possibility that a small num-
ber of children whowere good at crafting programs in Viscuit might
have a large effect on the aggregation.

Therefore, we defined the following sets of rules as the sets of
rules expressing their ideas effectively.

• Rules that match the direction in “Straight Move”: 17 pics.
• Rules that change the facial expression of “Cats” in “Change
of Picture”: 10 pics.

• Rules that change appearance of “Vase” in “Change of Pic-
ture”: 3 pics

Table 9: Number of techniques used by each child

Children No. of techniques M RM CP R Con
A 1 1
B 2 2 1
C 1 2
D 1 3
E 1 3
F 2 1 1
G 1 1
H 1 1
I 2 1 3
J 2 1 1
K 3 1 2 1
L 1 1
M 1 1
N 2 3 2
O 1 1
P 1 1
Q 1 2
R 2 2 1
S 2 1 1
T 2 1 1
U 2 1 1
V 1 1
W 1 1
X 2 1 1

Total 17 3 12 16 2

• Rules that make the ship sway and roll in “Random Move”:
3 pics.

• Rules of the waves in “Rotation”: 16 pics.
• Rules that apply “Conditional programs”: 2 pics.

Then, we calculated the number of each set.We found that almost
all children contributed to the number of these works. Twenty-four
of the 28 children (85.71%) were able to use the above expressions
(Table 9). Also, 13 children used one type of learned techniques, 10
children used two, and 1 child used three.

When we focused on 4 of the 28 children, who did not con-
tribute the number of the sets of rules expressing their idea effec-
tively(Table 9), we found that they made programs successfully.
For example, all of the four children drew something that was re-
lated to the operetta. They succeeded in making a rule applying
“Change of Picture”. Therefore, we could say they could understand
programming and the purpose of the lesson.

5.4 From Childcare Diary
The teacher of the kindergarten who executed these lessons kept a
childcare diary. In the diary, she wrote the following:

• I think this was the best lesson. Children succeeded in mak-
ing programs that showed their own character.

• They were pleased that the theme was operetta. Hence, their
motivation was increased when they heard that the work
would be used to introduce the operetta that will be attended
by their parents.

• There were some children who wrote all of the roles. Others
wrote only the role that he or she plays. In addition, some
children wrote saying “this picture may not appear in the
story, but it will appear in the world of the story”.

From this diary, we could determine that making programs us-
ing Viscuit stimulated the children’s imagination. They were very
motivated to express their ideas.

6 DISCUSSION
Throughout the year, kindergarten children had lessons using Vis-
cuit programming language. They were taught how to use tech-
niques such as “Straight Move”, “Random Move”, “Change of Pic-
tures”, and “Rotation”. We analyzed how children used each tech-
nique to express their idea in the final lesson.

The total number of techniques used by all children was calcu-
lated. The ratio of “Random Move” was 4.6%, and it was applied
significantly less than the other techniques (Figure 3). In addition,
“Straight Move” and “Rotation” were applied significantly more.
Those results were statistically significant based on the binomial
test. On the other hand, “Change of Picture” was not applied signifi-
cantly more. We do not think “Random Move” is more difficult than
the other three techniques, but children might need more time to
apply it in a series of lessons. It can be said that programming with
“Change of Pictures” is slightly more difficult for them compared to
programming with “Straight Move” and “Rotation”.

Some of the children made programs using techniques that were
not taught. “Random Move” was applied with “Rotation” to express
a swaying boat despite the fact that we taught them separately.
In addition, one child seemed to find out how to use “Conditional
programs”. This would imply that children who are on the concrete
operational stage could explore unknown techniques by themselves
without being taught. This is consistent with Louise’s study [10].

We confirmed that all of the children could make programs. This
seemed to match the previous results [10, 19]. In addition, they
applied their way of programming to express their idea validly.
Regarding the direction of movement of the pictures, we confirmed
that the children made programs in the proper direction again [36].
For “Random”, “Change of Picture”, and “Rotation”, we confirmed
that most of them were applied validly to express the operetta. Chil-
dren could successfully make programs using the picture rewriting
rules.

All children could make more than one set of rules, and the
average number was 5.42. 85.7% of them applied more than two
techniques to their works (Table 8). In this process, we think chil-
dren went through CTP [26] because they must have considered
which techniques to apply to which pictures.

When we looked at the technique usage in detail, we found that
almost all children, 85.7% of them, contributed to the sets of rules
expressing their ideas effectively (Table 9). In addition, the rest of
them also made works that were related to the operetta. We believe
that our curriculum was appropriate for them. All of them most
likely understood programming in Viscuit. It means we succeeded
in teaching what we want them to learn.

Considering the childcare diary written by the kindergarten
teacher, each child seemed to work on the lesson showing one’s

character, and they were motivated. We confirmed that program-
ming could empower children’s learning individually, which is in
accordance with what Papert said. He said that programming could
be a powerful tool for them to express their ideas [24].

7 CONCLUSION
This study analyzed how kindergarten children craft programs
using Viscuit by adopting the picture rewriting rules. In the exper-
iment, children effectively crafted programs by applying various
techniques to their own pictures. We conclude that the children
could make programs using Viscuit.

In addition, it is very likely that kindergarten children under-
stand the techniques used in their programs. They internalize them,
selected the learned techniques that matched the pictures they drew,
and expressed their ideas. In general, we can say that programming
helps children to express their ideas. This conclusion could apply
to all children attending this research.

In this study, the number of participants was small. We should
execute the same experiment with more children to confirm the
results we discuss in this research.

As future work, we would like to study whether the same results
could be achieved if we let children make programs with other
themes. In addition, in these lessons, we omit teaching conditional
programs; however, we should seek the way to teach conditional
programs.

REFERENCES
[1] Michael Anderson and George Furnas. 2010. Relating two image-based dia-

grammatic reasoning architectures. In International Conference on Theory and
Application of Diagrams. Springer, 128–143.

[2] Michal Armoni and Judith Gal-Ezer. 2014. Early Computing Education: Why?
What? When? Who? ACM Inroads 5, 4 (Dec. 2014), 54201359. https://doi.org/10.
1145/2684721.2684734

[3] B. Bell and C. Lewis. 1993. ChemTrains: a language for creating behaving pictures.
In Proceedings 1993 IEEE Symposium on Visual Languages. 188–195.

[4] Marina U Bers. 2010. The TangibleK Robotics program: Applied computational
thinking for young children. Early Childhood Research & Practice 12, 2 (2010), n2.

[5] Marina Umaschi Bers, Louise Flannery, Elizabeth R. Kazakoff, and Amanda Sul-
livan. 2014. Computational thinking and tinkering: Exploration of an early
childhood robotics curriculum. Computers Education 72 (2014), 145 – 157.
https://doi.org/10.1016/j.compedu.2013.10.020

[6] L. G. Caguana Anzoàtegui, M. I. Alves Rodrigues Pereira, and M. del Carmen
Solís Jarrìn. 2017. Cubetto for preschoolers: Computer programming code to
code. In 2017 International Symposium on Computers in Education (SIIE). 1–5.

[7] D.H. Clements. 1986. Effects of Logo and CAI enviroments on cognition and
creativity. Journal of Educational Psychology 78, 4 (1986), 309–318. https://doi.
org/10.1037/0022-0663.78.4.309

[8] Cubetto 2019. Cubetto A toy robot teaching kids code & computer programming.
Retrieved Mar 27, 2019 from https://www.primotoys.com/

[9] DevTech 2011. DevTech Research Group. Retrieved Mar. 5, 2020 from https:
//ase.tufts.edu/devtech/index.html

[10] Louise P. Flannery and Marina Umaschi Bers. 2013. Let’s Dance the “Robot
Hokey-Pokey!”Children’s Programming Approaches and Achievement through-
out Early Cognitive Development. Journal of Research on Technology in Ed-
ucation 46, 1 (2013), 81–101. https://doi.org/10.1080/15391523.2013.10782614
arXiv:https://doi.org/10.1080/15391523.2013.10782614

[11] J. H. Flavell. 1996. Piaget’s Legacy. Psychological Science. Journal of Research on
Technology in Education 7, 4 (1996), 2002013203. https://doi.org/10.1111/j.1467-
9280.1996.tb00359.x

[12] Y. Harada and R. Potter. 2003. Fuzzy rewriting: soft program semantics for
children. In IEEE Symposium on Human Centric Computing Languages and Envi-
ronments, 2003. Proceedings. 2003. 39–46.

[13] Mia Heikkilä and Linda Mannila. 2018. Debugging in Programming as a Multi-
modal Practice in Early Childhood Education Settings. Multimodal Technologies
and Interaction 2, 3 (2018). https://doi.org/10.3390/mti2030042

[14] Json 2018. JSON - Wikipedia. Retrieved Apr. 5, 2018 from https://en.wikipedia.
org/wiki/JSON

[15] Kalliopi Kanaki andMichail Kalogiannakis. 2018. Introducing fundamental object-
oriented programming concepts in preschool education within the context of
physical science courses. Education and Information Technologies 23 (2018), 2673–
2698.

[16] Marina Kazakoff, Elizabeth;Bers. 2012. Programming in a robotics context in the
kindergarten classroom: The impact on sequencing skills. Journal of Educational
Multimedia and Hypermedia 21, 4 (November 2012), 371–391.

[17] Kodu 2020. KODU GAME LAB COMMUNITY. Retrieved Mar. 5, 2020 from
https://www.kodugamelab.com/

[18] Kaitlyn D Leidl, Marina Umaschi Bers, and Claudia Mihm. 2017. Programming
with ScratchJr: a review of the first year of user analytics. In Conference Proceed-
ings of International Conference on Computational Thinking Education. 116–121.

[19] Linda Mannila, Valentina Dagiene, Barbara Demo, Natasa Grgurina, Claudio
Mirolo, Lennart Rolandsson, and Amber Settle. 2014. Computational Thinking
in K-9 Education. In Proceedings of the Working Group Reports of the 2014 on Inno-
vation Technology in Computer Science Education Conference (Uppsala, Sweden)
(ITiCSE-WGR ’14). Association for Computing Machinery, New York, NY, USA,
1201329. https://doi.org/10.1145/2713609.2713610

[20] Eva Marinus, Zoe Powell, Rosalind Thornton, Genevieve McArthur, and Stephen
Crain. 2018. Unravelling the Cognition of Coding in 3-to-6-Year Olds: The
Development of an Assessment Tool and the Relation between Coding Ability
and Cognitive Compiling of Syntax in Natural Language. In Proceedings of the
2018 ACM Conference on International Computing Education Research (Espoo,
Finland) (ICER ’18). Association for Computing Machinery, New York, NY, USA,
1332013141. https://doi.org/10.1145/3230977.3230984

[21] Cecilia Martinez, Marcos J. Gomez, and Luciana Benotti. 2015. A Comparison of
Preschool and Elementary School Children Learning Computer Science Concepts
through a Multilanguage Robot Programming Platform. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education
(Vilnius, Lithuania) (ITiCSE ’15). Association for Computing Machinery, New
York, NY, USA, 1592013164. https://doi.org/10.1145/2729094.2742599

[22] Leonel Morgado, Rosa Cristóvão Morgado, Maria Cruz, and Ken Kahn. 2005.
Embedding Computer Activities into the Context of Preschools. (01 2005).

[23] Stamatios Papadakis, Michail Kalogiannakis, and Nicholas Zaranis. 2016. Devel-
oping Fundamental Programming Concepts and Computational Thinking with
ScratchJr in Preschool Education: A Case Study. Int. J. Mob. Learn. Organ. 10, 3
(Jan. 2016), 1872013202. https://doi.org/10.1504/IJMLO.2016.077867

[24] Seymour A. Papert. 1993. Mindstorms: Children, Computers, And Powerful Ideas.
Basic Books.

[25] Alexander Repenning. 1993. Agentsheets: A Tool for Building Domain-Oriented
Dynamic, Visual Environments. Technical Report.

[26] Alexander Repenning, Ashok Basawapatna, and Nora Escherle. 2016. Com-
putational thinking tools. In 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 218–222.

[27] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, and Diana Franklin.
2019. A K-8 Debugging Learning Trajectory Derived from Research Literature. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 7452013751. https://doi.org/10.1145/3287324.3287396

[28] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (Tacoma, Washington, USA) (ICER
’17). Association for Computing Machinery, New York, NY, USA, 1822013190.
https://doi.org/10.1145/3105726.3106166

[29] ScratchJr 2018. ScratchJr.org: Coding for Young Children. Retrieved Oct 1, 2018
from https://www.scratchjr.org/

[30] Linda Seiter and Brendan Foreman. 2013. Modeling the Learning Progressions
of Computational Thinking of Primary Grade Students. In Proceedings of the
Ninth Annual International ACM Conference on International Computing Education
Research (San Diego, San California, USA) (ICER ’13). Association for Computing
Machinery, New York, NY, USA, 59201366. https://doi.org/10.1145/2493394.
2493403

[31] David Canfield Smith, Allen Cypher, and Jim Spohrer. 1994. KidSim: Programming
Agents without a Programming Language. Commun. ACM 37, 7 (July 1994),
54201367. https://doi.org/10.1145/176789.176795

[32] Amanda A Sullivan, Marina Umaschi Bers, and Claudia Mihm. 2017. Imagining,
playing, and coding with KIBO: using robotics to foster computational thinking
in young children. Siu-cheung KONG The Education University of Hong Kong,
Hong Kong 110 (2017).

[33] Viscuit 2020. Viscuit. Retrieved Mar. 5, 2020 from https://www.viscuit.com
[34] Takeshi Watanabe, Yuriko Nakayama, Yasunori Harada, and Yasushi Kuno. 2018.

Programming Lessons for Kindergarten Children in Japan. In Constructionism2018
(Vilnius, Lithuania). 741–744. http://www.constructionism2018.fsf.vu.lt/file/
repository/Proceeding_2018_Constructionism.pdf

[35] Takeshi Watanabe, Yuriko Nakayama, Yasunori Harada, and Yasushi Kuno. 2019.
How Can Children Express Their Intentions Through Coding? Analysis of Vis-
cuit Programs in Kindergarten. In Proceedings of the 2019 ACM Conference on

https://doi.org/10.1145/2684721.2684734
https://doi.org/10.1145/2684721.2684734
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1037/0022-0663.78.4.309
https://doi.org/10.1037/0022-0663.78.4.309
https://www.primotoys.com/
https://ase.tufts.edu/devtech/index.html
https://ase.tufts.edu/devtech/index.html
https://doi.org/10.1080/15391523.2013.10782614
https://arxiv.org/abs/https://doi.org/10.1080/15391523.2013.10782614
https://doi.org/10.1111/j.1467-9280.1996.tb00359.x
https://doi.org/10.1111/j.1467-9280.1996.tb00359.x
https://doi.org/10.3390/mti2030042
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://www.kodugamelab.com/
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1145/2729094.2742599
https://doi.org/10.1504/IJMLO.2016.077867
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3105726.3106166
https://www.scratchjr.org/
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/176789.176795
https://www.viscuit.com
http://www.constructionism2018.fsf.vu.lt/file/repository/Proceeding_2018_Constructionism.pdf
http://www.constructionism2018.fsf.vu.lt/file/repository/Proceeding_2018_Constructionism.pdf

Innovation and Technology in Computer Science Education. 326–326.
[36] Takeshi Watanabe, Yuriko Nakayama, Yasunori Harada, and Yasushi Kuno. 2020.

Analyzing Understanding of the Direction in Viscuit Programs Crafted by Kinder-
garten Children. IPSJ Transactions on Computers and Education 6, 1 (Feb 2020),
28–39. https://ci.nii.ac.jp/naid/170000181714/"

[37] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[38] Jeannette M Wing. 2014. Computational thinking benefits society. 40th Anniver-
sary Blog of Social Issues in Computing 2014 (2014).

https://ci.nii.ac.jp/naid/170000181714/"

	Abstract
	1 Introduction
	2 Related Work
	3 Visual Programming Language Viscuit
	4 Research and Conducted Lessons
	4.1 Subjects and contents of lessons
	4.2 Collecting children's programs

	5 Program Analysis
	5.1 Programs
	5.2 What children expressed in programs
	5.3 Numbers and types of programs made by children
	5.4 From Childcare Diary

	6 Discussion
	7 Conclusion
	References

