
Freshmen Courses for Informatics Education
Incorporating Blended Learning

Yasushi Kuno
Univ. of Electro-Communications

y-kuno@uec.ac.jp

Hironori Egi
Univ. of Electro-Communications

hiro.egi@uec.ac.jp

Noriko Akazawa
Univ. of Electro-Communications

akazawai@uec.ac.jp

Sumito Takeuchi
Univ. of Electro-Communications

s-take@uec.ac.jp

Michiko Sasakura
Univ. of Electro-Communications

sasakura@uec.ac.jp

Makiko Kimoto
Univ. of Electro-Communications

kimoto.makiko@uec.ac.jp

KEYWORDS

blended learning, flipped classroom, report-based evaluation, pro-

gramming exam with automatic scoring

ABSTRACT

University of Electro-Communications (UEC) is a national col-

lege located in the suburbs of Tokyo, and is specialized in informat-

ics, science, and engineering. The task of our informatics course

for the freshmen year is to smoothly prepare students toward ad-

vanced technical curriculum in the sophomore year and further.

To accomplish the task with limited class hours, we have designed

and implemented a systematic blended learning curriculum and

methods using Moodle LMS. In our method, students study class

contents using text and videos in advance (flipped classroom), and

the majority of class hours are used for exercises (mostly using

computers). All learning materials are distributed using Moodle,

and students can use them from home as well as in our computer

rooms. Students are required to submit a report each week, and

those reports are scored by the lecturer and teaching assistants

with appropriate feedback. End-term exams are also carried out

using Moodle with automatic scoring. Final marks are calculated

by 50:50 sum of report score and exam score. As a result, students’

satisfaction was high. Further, with our programming course, most

students could acquire fundamental programming skills.

1 INTRODUCTION

University of Electro-Communications (UEC) is a college lo-

cated in the suburbs of Tokyo, and is specialized in informatics, sci-

ence, and engineering. In the undergraduate curriculum, we pro-

vide three clusters (departments), cluster 1 through 3. Cluster 1

covers informatics, and cluster 3 corresponds to science and engi-

neering. Cluster 2 is the “boundary” or “fusion” cluster, including

robotics, sensor & control, and so on. As a result, our students need

to be fluent with informatics.

In Japanese colleges and universities, science and engineering

(including informatics) 4th (final) grade undergraduate students

must experience research activities and write a paper to gradu-

ate. Therefore, they have to acquire advanced knowledge and skills

needed for research by their 3rd grade, which is not an easy task.

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019.

.

We are designing and implementing the informatics curriculum

for the freshmen year, whose task is a smooth entrance of our stu-

dents into more advancedmaterials covered in the sophomore year

and further. Those materials include algorithms & data structures,

numerical analysis, computer architecture, operating systems and

so on.

However, students also have to take mathematics, physics &

chemistry (with experiments), and some other courses in their fresh-

men year. Therefore, we have only two informatics course of 15

weeks (90 minutes per week) each, namely “computer literacy” in

the first semester and “fundamental programming” in the second

semester (the former and the latter half of freshmen year).

The above is rather limited hours considering what students

have to acquire by the sophomore year. To overcome the problem,

we have designed and implemented the above two courses with

extensive use of IT (information technology) in blended learning

settings, which we explain in this paper.

Rest of this paper is as follows. In Chapter 2, we discuss the

general design policy of our courses (our two courses have many

design choices in common). In Chapter 3 and 4, we explain our

design and experiences on “computer literacy” (“CL” below) and

“fundamental programming” (“FP” below), respectively. In Chapter

5, we review related works. In Chapter 6, we present discussions

and conclusion.

2 GENERAL DESIGN POLICY FOR TWO
COURSES

2.1 General course settings

UEC have about 800 students in a grade. However, the number

of students registered to CL or FP courses differ from above, be-

cause some students pass the subject due to qualified courses in

their previous schools (other colleges), and some students failed

in the previous year take the same course again. The number of

students showing up to the end-term exam is approximately 770.

There are 13 classes of approximately 60 students each, with one

lecturer and two graduate teaching assistants for each class. Two

computer rooms are used, so there can be at most two classes at

the same time. There are 15 weeks of class hours (90 minutes each).

80 minutes end-term exam is also performed in the ordinary

class hour in 16th or 17th week. We fully use CBT (computer based

test) to reduce scoring cost. To prevent problem leakage, We pro-

vide seven problem sets of similar but not identical problems; classes

1

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019. Kuno, Egi, Akazawa, Takeuchi, Sasakura, Kimoto

performing the exam on the same or neighboring hour share the

same set of problems.

2.2 Problems and solutions

Firstly, we must make clear what problems to attack with our

course design; the following is our list.

(1) Limited time — As noted above, 15 weeks with 90 minutes

each is allocated for each course, and we have to get along

with this.

(2) Need for exercises — Students will have very few experi-

ences on college level informatics materials. For concrete

understandings of those materials, experience through ex-

ercises is mandatory.

(3) The large difference among students — Some of our stu-

dents are interested in informatics since their youth, and

are fluent with it, while others are just novices. Addition-

ally, although “information study” subject is mandatory in

Japanese high school curriculum, actual contents and levels

largely differ from school to school, leading to again large

differences in even among “novices.”

(4) Novices dropping out — The gap between required skill to

pass and students’ actual skills tend to be large in novices,

so novices have a tendency to dropping out. However, most

of our students are novices, because “information study” is

not considered important in Japan (it is rarely used in a col-

lege entrance exam, and subject that is not used in college

entrance exam often regarded as unimportant).

(5) Skilled student getting bored — For our college, develop-

ment of skilled students throughout the freshmen year is

very important. However, if we make contents of the course

easy to prevent (4), then skilled students will get bored and

lose interest in the subject.

(6) Difficulty in programming education — Programming is no-

torious for its difficulty in teaching; we have seen many stu-

dents dropping out. FP curriculum has to deal with this dif-

ficulty somehow.

For (1) and (2), flipped classroom (student study supplied ma-

terials in advance to the class hours) can be the solution. For the

purpose, we prepared textbooks which explain all materials in de-

tail, and lecture videos for every week.

In order that those materials actually be used, we additionally

did the followings.

• We have included all materials in a Moodle course, and used

them fully in the class hours. Students can log in to the

course from their home, and they will see the same materi-

als, leading to a smooth transition from classroom learning

to home learning.

• Students have to submit their assignment report every week

through the Moodle course. Additionally, they are also re-

quired to submit “activity report” at the end of each class

hour. Form of these reports are similar, so that they can

“practice” report submission in every class hours, and also

get used to Moodle operation.

• Video lectures are actually placed on YouTube, so that they

can comfortably be viewed with smart phones. They are

split into a short movie of around 5minutes, so that viewing

one of the video does not take long.

• We asked the lecturer to avoid lectures during class hours

and proceed to exercise as soon as possible; this urge stu-

dents the need for studying in advance.

To overcome (3), we have prepared many exercise problems for

each week, and ordered students to “choose one or more exercises,

practice them, and write a report.” There is also a large difference

in the difficulty of those exercises. Therefore, students fluent in the

topics choose difficult exercises and answer many in their report,

while novices will choose easy ones and answer only a few in their

report.

The above method seems not fair at first glance, but we be-

lieve this scheme is a “must” in our situation. Consider the follow-

ing: muscular workout requires appropriate weight to be effective;

if too heavy, it will cause damage, and if too light, it will be useless.

Likewise, the difficulty of an exercise should be balanced with

the students’ ability; if too difficult or too easy, it will be useless.

We saw many classrooms in which only one exercise is presented

and all the students must do that; we suspect that that exercise

will be too difficult or too easy for most of the students and thus

ineffective. We avoid such problem.

People also might suspect: “hey, all student will choose the easi-

est exercise for their luxuriation.” In our observation, most student

choose exercises appropriate for their ability. Perhaps it is because

skilled students like informatics and so want to attack difficult ex-

ercises, and for novices easy exercise will be appropriate anyway.

There do exist lazy students who choose easy exercises in spite of

their ability, and they tend to score less in the end-term exam.

Solutions to (4) and (5) are tightly connected to the above scheme

(students choosewhich exercise to solve). As noted previously, stu-

dents are required to submit a report on every week. Contents of

these reports are how they solved the problems, plus findings from

the experience of solving the problems; the difficulty of the prob-

lems are not accounted for in scoring.

Professors are accustomed to review and grade reports with re-

spect to their quality (sentences, logics, presentations and so on),

and we are asking for such grading. Therefore, novices and skilled

students in informatics are evaluated on equal foot. Students also

know the fact, so novices are not discouraged.

Additionally, our criteria for grading is that, ordinary reports,

which is the majority, receives score B, extremely superior (very

few) reports receive A, and reports with some clear failure (do

not satisfy some stated condition) receives C. This criteria is very

coarse and thus reports can be graded rather quickly.

Yet, a class with 60 students and 15 weeks result in 900 reports

in total, which is a huge amount. To reduce the burden of opening

60 documents every week, we concatenated 60 reports into single

PDF document and added watermark with a student ID to every

page, changing colors among students. Professors just have to skim

through a PDF document of approximately 120 (week of the short

report) to 600 (week of the long report) pages, which was manage-

able enough.

Many students complain that their reports receiving B in spite

of their effort, but we repeatedly explain that A is limited to really

2

Freshmen Course Incorporating Blended Learning Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019.

excellent reports. Instead we are asking professors to return one-

line feedback comments to their reports if possible (alongwithTA);

actual existence or elaboration of feedback comments vary among

classes.

We assign 3 points to B report, 4 to A, and 2 to C. There are

two “integrated exercise” weeks, in which not many topics are pre-

sented and students attack slightly complex problems (or group

works), and those receives double points (b = 6, a = 8, c = 4). The

result is that all normal grade (B or b) results in approximately full

score (50 points) for the reports. With A or a, additional points can

be earned, up to 59 (one need 60 points to pass the course). Re-

maining scores come form end-term exam, whose full score is also

50. The total of these scores (maximum 100) is used for grading.

With this scoring, one is likely to pass the course if they sub-

mit a normal report every week, which is encouraging to novices

— solution to (4). Note that there are also good points for skilled

students, because good total score requires good points from the

end-term exam, so they will not complain about either — solution

to (5).

As for (6), we are going to discuss the topics in Chapter 4, but we

are using some of CL hours as preparation to FP. For example, our

students experience assembly language simulator in “principles of

computers” topic, and simple JavaScript programming in “software

development” topic included in CL.

3 COMPUTER LITERACY (CL)

3.1 CL course design policy

As we search on the net, there seem to be many colleges having

a course named “Computer Literacy.” However, the content of our

CL is distinguishing in that it mainly focuses on Unix, LaTeX and

HTML (Figure 1), which will be needed in the sophomore year and

later.

The difficulty in our CL course design is that large portion of

our contents are command line based (Unix, Shell) and markup

language based (LaTeX, HTML / CSS), while students are accus-

tomed to GUIs (Windows, Explorer) and GUI applications (Word,

Excel, PowerPoint). If they feel like: “Hey, what heck is this old-

fashioned, complex, tedious and seemingly useless tools?” then we

will certainly fail.

Solutions of our predecessor (course design used until the school

year 2016) were to “treat them as knowledge to be acquired by stu-

dents.” Students learn that knowledge through lectures, memorize

them, dump them onto an exam sheet, and forget — it is seemingly

understandable to students, because many school contents were

likewise. However with such experiences, students will never use

that those knowledge to actual tasks in their college life, which is

undesirable.

Our solution is already described in the previous chapter — lots

of experiences through exercises in the class hours, and actual use

of that knowledge through weekly report assignment (students

have to use command lines or markup languages because exercise

problem states as such).

3.2 Curriculum for CL2018

Figure 1 shows our CL curriculum for the school year 2018.

#1 is the guidance, but a difficulty in authentification and issue of

Table 1: Weekly curriculum of CL2018

week topics

#1 What is computers?, Passwords, Touch Typing

#2 Principles and Functionality of Internet

#3 Nexworks and Security

#4 Principle of Computers (assembly programming)

#5 File System, File Manipulation

#6 Text files and Text editors

#7 Computer Systems and OS

#8 Unix Filters, Shell scripts

#9 Markup and text formatters (LaTeX)

#10 Graphics, figures and tables (LaTeX)

#11 Academic Literacy (Integrated Exercise)

#12 HTML / CSS and Web page creation

#13 Web and Information Architecture

#14 Web site design and construction in team (Integrated
Exercise)

#15 Software development and Tests (JS programming)

safe passwords are noted, and students craft their own “safe and

alsomemorizable” password and change login password. Most stu-

dents have not heard about touch typing, sowe introduce the touch

method here. We provide measurement page, and those reached to

150 or 100 characters / minutes by the end of the semester will

receive 3 or 2 bonus points respectively.

#2 includes the first experience of Unix command line, but major

topics is on packet switching, network protocols and Internet; stu-

dents try ping command to measure packet round-trip time, and

paper-based exercise on error recovery protocol (the sender write

messages onto multiple memo sheet “packet” and send one by one

to the receiver, and intervening “network” occasionally introduce

transmission errors — the sender and the receiver have to come up

of some error recovery method to attain error free transmission).

#3 includes topics of cryptography and PKI, and students ex-

amine PKI certificate on their Web browser (although they must

have used Web browsers many thousands of times, scarcely any

student have not experienced those matter in the browser). Then

we set up a college e-mail account on our IMAP mail client (Thun-

derbird), and view RFC822 formatmessage for their ownmail mes-

sages (which is also their first experience).

#4 contains the topic “principle of computers.” However, those

topics are difficult to be understood with ordinary lectures. There-

fore, we use an assembly language programming experience here.

We designed and developed a small accumulator (1-register) ma-

chine architecture and its simulator running on a Web page. Stu-

dents experience simple assembly language programming with the

simulator. Figure 1 shows a screenshot of the simulator, with the

result of “compare X and Y value, then store larger to Z” program

shown. Our intent was that students will understand the princi-

ples of the computer through the exercise, and the exercise can be

a good introduction to programming by itself.

#5-#8 are the various aspects and topics on Unix system, and

students exercise Unix commands and tools.

#9-#11 are focused on LaTeX report writing. Starting from #9,

students are required to write their reports with LaTeX and submit

3

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019. Kuno, Egi, Akazawa, Takeuchi, Sasakura, Kimoto

Figure 1: A small computer simulator

resulting PDF. #9 introduces LaTeX, and in #10, basics of graphics

(pixel graphics, vector graphics) and various image files are cov-

ered, along with LaTeX figures and tables. #11 is an integrated ex-

ercise; topics of academic literacy are briefly introduced, then the

students are gathered to a group of 3-5 people to discuss an aca-

demic literacy-based theme they have chosen.

#12-#14 are focused on Web page design and construction with

HTML and CSS. #12 introduces HTML / CSS using HTML prac-

tice page (Figure 2). The page allows students to type and mod-

ify HTML / CSS in the upper area, and “Run” button immediately

shows the result display in the lower area; CSS styling, character

entry (for special characters) and link tag can be used as in the ordi-

nary HTML file. Note that we teach both HTML and CSS from the

start, because students have high motivation in decorating their

pages; they were interested in a various presentation which can

be specified through CSS. #13 covers topics of inline / background

images in a page, intra-site links, and structure ofWeb sites (linear,

hierarchy and so on). #14 is again an integrated practice; students

forms groups and design / develop a site on some specific theme

(chosen by themselves) containing multiple pages.

Finally, #15 is an independent topic of software development;

this topic was placed in the middle in the school year 2017 with

Web site construction being the last topic, but students complained

about heavy integrated exercise just before the exam week, so we

moved this topic to the last week. This topic includes a notion

of high-level language (compared to assembly language, which is

low level), simple JavaScript programming, and concept of soft-

ware product development (which is quite different from simple

programming) along with the notion of software testing. In this

week, we use two practice web pages, namely JavaScript execu-

tion page and test case execution page. In the former, one can type

and execute a simple JavaScript program. In the latter, one enters a

JavaScript function plus several simple test cases (set of input pa-

rameters and expected return value) and run them to experience

how the unit test looks like.

Figure 2: HTML practice page

3.3 Experiences of CL2018

Here we report our experience for the school year 2018. Week

#1-#3were relatively easy, and students seem to enjoy them. As for

assembly programming in #4, many novice students report that

they have enjoyed their programming experiences. As assembly

language instructions (corresponding to CPU instructions of “small

computer”) are very primitive and simple, students had little dif-

ficulty in grasping and using them; some students with previous

programming experiences were a bit confused because assembly

language does not have nested if or while statements.

However, Unix topics in #5-#8 were dark sides; although stu-

dents could submit the report as in the other weeks, chosen exer-

cises were relatively easy ones and an only small number of stu-

dent (perhaps with previous Unix experiences) became fluent with

file / directory hierarchy, Unix commands, process handling, and

Emacs editing. We feel these topics are difficult tomaster in several

weeks.

From #9, LaTeX sections start. Perhaps because we have ex-

plained that LaTeX is the majority in science / engineering aca-

demic community and convenience LaTeX math formulas, there

was a little complaint in learning LaTeX. #10 mainly focuses on ex-

ercise on graphics (write PPM image and / or PostScript with a text

editor); students were impressed that text can actually be sources

for graphics. The focus of #11 is group discussion; many students

noted that they have not experienced such discussion before, and

it was interesting (apparently this is the weak side of traditional

school education in Japan). These reports must be formatted with

LaTeX so that students get accustomed to it; by the end of the se-

mester, several students seem to start using LaTeX for reports in

other courses.

From #12, HTML / CSS sections start. As students have already

learned one markup language (namely LaTeX), learning another

seems of little difficulty. Additionally, the practice page is proved

to be a powerful tool for learning the topic. In #13, students are re-

quested to construct multiple passes or pages with separate image

files referred to within, so practice pages cannot be used. However,

as students see that copying HTML source from the practice page

input area to text editor results in the correct HTML file, they had

4

Freshmen Course Incorporating Blended Learning Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019.

50

100

150

200

250

300

350

400

0-

9

5-

10

10-

11

15-

9

20-

12

25-

10

30-

19

35-

22

40-

53

45-

183

50-

406

55-

51

60-
3

65-
3

Figure 3: Histogram for CL report score (n=801)

little problem in transition. In #14, Web site planning, design and

development in teams are the mandatory exercise, and most stu-

dents enjoyed their originalWeb site construction. They also noted

about the difficulty of team development (load bias, communica-

tion problems and so on), which we hoped them to experience.

Finally, #15 is mainly focused toward programming in a high-

level language (JavaScript in this case), although other topics are

also covered. We asked which one of the assembly and JavaScript

to prefer in the inquiry, and as a result, some prefer assembly and

the other prefer JavaScript. This topic seems to be a good prepara-

tion for FP in the second semester.

3.4 Evaluation method for CL2018

As noted previously, 50 points come from assignment reports,

and the remaining 50 points come from the end-term exam of 80

minutes. For the exam, we used the following types of problems.

• 5-2 problems (34 problems) — Five sentences regarding a

chosen topic are provided, and students choose two correct

sentences from the list. The score will be 2 if both choices

are correct, 1 if one choice is correct, and 0 otherwise.

• Split-Paper (SP) tests (8 problems) — Students are asked to

construct correct answers by choosing lines from choice set

and reordering them as necessary. The score will be 2 if the

resulting answer is correct, 1 if a single difference from the

correct answer is found, and 0 otherwise.

We use 5-2 test instead of a simple multiple choice test or YES-

NO test, because interference among five statements shows a prob-

lem more difficult. As to the SP tests, we explain them in depth in

the next chapter; for CL course, various kind of lines — lines from

LaTeX source, HTML source, PPM image text, and program text

are used.

As exams are carried out in a normal class setting (in two com-

puter rooms), we prepared seven problem sets to avoid problem

leakage. The corresponding problems for each set are similar.

For a total of 42 problems, the full score will be 84 points; we

scale them appropriately, and calculate sumwith report score (plus

typing bonus of at most 3 points) for the final mark.

total score

of students

28-31
32-35

36-39
40-43

44-47
48-51

52-55
56-59

60-63
64-67

68-71
72-75

76-79
80-83

20

40

60

80

100

120

Figure 4: Histogram for CL exam score (n=769)

Table 2: [CL] Q. Was the course useful to you?

Positive Weak
Positive

Neutral Weak
Negative

Negative No
Answer

164 230 191 72 39 9

23.0% 33.5% 26.8% 10.1% 5.5% 1.3%

Table 3: [CL] Q. Have you learned much in the course?

Positive Weak
Positive

Neutral Weak
Negative

Negative No
Answer

405 243 33 18 5 10

56.7% 34.0% 4.6% 2.5% 0.7% 1.4%

3.5 Results of CL2018

Figure 3 shows accumulated points of report scores (as noted

previously scores over 59 is forced to 59 for grading). As expected,

frequency around 50 points (all B / b) is highest, meaning that most

students submitted the ordinary-level report.

Figure 4 shows a histogram for the exam, with the full score

being 84. From the distribution, we consider that the test score

appropriately measures students’ performance. We also examine

students’ score for each problem to investigate where to improve

in the course (not shown here due to space limitation).

Table 2 and 3 are a summary of inquiry in the last class hour

(#15). These results indicate that students recognize the class as

useful, and they have learned much from the course.

4 FUNDAMENTAL PROGRAMMING (FP)

4.1 FP course design policy

In contrast to CL, the goal of FP is clear and can be agreed upon

by most people — just acquire programming skills. However, this

simple goal is notoriously difficult, as noted before.

Based on our previous experiences, we choose the following

seven policies to overcome the problem (difficulty of programming

education). We explain them below.

5

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019. Kuno, Egi, Akazawa, Takeuchi, Sasakura, Kimoto

?

take
off

Figure 5: Concept of take off

Policy 1: Take off first. The term “take off” means that one can

express his / her idea as programming code and run it. It sounds

like a final goal and not a policy, but it is not so.

Inmany programming classes, the teacher first explains not only

overviews but also many details (accurate lexical or syntax rules

and so on) of the programming language before exercises. It is per-

haps because many programming textbooks are written in such a

way. With such method, students get to exercise of writing their

own program, they get stuck because so much knowledge was al-

ready presented, and they cannot know which of this knowledge

are important and which are not (the lower route of Figure 5).

In our scheme, we present a short but complete running pro-

gram and explain them. Following is the first program in our FP

course, a Ruby method to compute the area of a triangle.

def triarea(w, h)

s = (w * h) / 2.0

return s

end

Then we explain the meaning of the code from top to the bot-

tom, but it won’t be long because the program is so short (we avoid

generalization as much as possible here).

After students actually entered and run the above code, first ex-

ercise problems are presented. They are: “sum of two numbers,”

“volume of corn,” ”the inverse of a number” and so on. It is not dif-

ficult for students to solve those problems, and this means “express

his / her idea as programming code and run it.” Then, we add new

knowledge one by one, always making sure the “took off” status

of the students continuing (upper route of Figure 5).

“Take off first” approach has huge benefits, namely: (1) if some-

thing goes wrong, computer automatically tell the student as such

because the program will not run, so students can be confident

with their code, and (2) students are highly motivated because

looking at one’s own program running is a pleasure.

Policy 2: Varied levels of exercises. This is the solution to the prob-

lem (3) of section 2.2.

Policy 3: Take precedence on practice. To keep the status of “took

off,” practice is important. To reserve enough class hours for prac-

tice, the flipped classroom is employed, as in CL.

Policy 4: Encourage novices. This is the solution to the problem (4)

of section 2.2.

Policy 5: Clearly indicate the goal of acquiring programming skills.

Many programming course exams include problemother thanwrit-

ing programs, e.g., test syntax knowledge, program comprehen-

sion, and so on. Therefore, many students without actual program-

ming skills pass the programming course thanks to these kinds of

problems. However, they will get stuck when they really have to

create a program to solve their problems. It is as if a doctor say-

ing: “I got the doctor license thanks to easy problem, but I really

do not have the skill to treat patients.”

Therefore, in the end-term exam of our FP course, all of the

problems are program construction, and we announce our stu-

dents as such from the start, and students struggle to acquire the

skill. Previously, program construction exams were difficult for a

large number of students because a skilled person has to grade

them. However, we developed Split-Paper (SP) tests for program-

ming performance evaluation, and these tests can be automatically

scored. We discuss the issue of evaluation further in section 4.4.

Policy 6: There is no single “correct” code in programming. In our

experience, high school students have the tendency of believing

that there is always “a single, correct answer” to the problem, and

they “search” for that single solution. However in programming,

code with the identical outcome can be written in multiple ways,

and students should realize the fact.

We repeatedly tell our students the above issue, and presents

multiple “correct” sample answers to a problem many times. Ad-

ditionally, we speak to the student as: “There is multiple correct

ways towrite the code, so YOU have to decide among those choices

yourself; develop your own policy on which way to choose.”

Policy 7: You should produce your code out of your brain. As in Pol-

icy 1 (take off policy), students should express their ideas as pro-

gram code. However, for the first few weeks, those “ideas” are pro-

vided as exercise problems, and they code the solution. However,

people learn programming best when they are programming their

own idea, what they want to do themselves.

Therefore, we include “free programming” problem stating “cre-

ate a program which you feel interested” on many occasions. Ad-

ditionally, we use two “Integrated Exercise” week for the creation

of pictures (images) and movies (frame animations) of students’

preference. They are appropriate because we can easily come up

of our own idea with pictures and movies.

4.2 Curriculum for FP2018

Figure 4 shows our FP curriculum for the school year 2018. We

use Ruby for 10 weeks, and use C language for the remaining 5

weeks. Rubywas chosen because it is a suitable language for “Take

off first” scheme; code can simply contain target method (function

or subroutine in Ruby term), no extra declaration, includes or sur-

rounding module necessary.

However in UEC, programming curriculum of the sophomore

year is based on C language, so we cannot avoid C language for our

course. In the programming community, it is often said that learn-

ing a 2nd language is not so much of a burden but leads to lots of

benefits. In our case, C language (in addition to Ruby) can provide

(1) experiences in a statically typed language, and (2) knowledge

that primitive elements of programming languages (if, while, ar-

ray, struct) are similar or identical.

Table 4 shows our FP curriculum for the school year 2018. #1

includes a brief guidance which is immediately followed by the

explanation of the first example (triarea above), how to use Ruby,

and then first exercises explained above. For all exercises we use

6

Freshmen Course Incorporating Blended Learning Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019.

Table 4: Weekly curriculum of FP2018

R: Ruby; C: C languageweek topics

#1R Introduction to Programming; Numerical Errors

#2R Control Structures; Numerical Integration

#3R Control Structures(2); Arrays and its usage

#4R Procedure and Abstraction; Recursion

#5R 2-Dim Arrays; Records; Image Representation

#6R Drawing a Picture (Integrated Exercise)

#7R Sorting Algorithms; Computational Complexity

#8R Complexity (2); Random Numbers/Algorithms

#9R Object-Orientation

#10R Dynamic Data Structures; Encapsulation

#11C Introduction to C Language; Solving f (x) = 0

#12C Various C Types; Dynamic Programming

#13C Manipulating Strings; 2-Dim Arrays in C

#14C Record Types in C; Dynamic Data Structures (2)

#15C Team Development (Integrated Exercise)

the irb command (read-eval-print loop in term of programming

language community), so that we can invoke methods by directly

specifying input data and automatic printouts of return value; in

this way we can postpone tedious, lengthy and difficult input /

output altogether.

The latter half of #1 includes topics of numerical error present

in floating point calculation (real numbers), and exercise observe

various kind of numerical errors appearing in computation. Such

topics are not usually included in the introductory programming

course. However, the topic can be used with simple straight line

code (no loops or branches), so we can include it here. The inten-

tion is that skilled students are going to investigate these advanced

topics with interests; they will get bored if such topics do not ex-

ist. Additionally, we wanted all students to know an important fact

that “computation with computer is not at all 100%-accurate,” to

which many students expressed surprise.

#2 and #3 focus on if statements and loops, and then combines

them to constructmore complex control structures. Introduction to

arrays is also included. #4 focuses on procedures. As noted above,

we use Ruby procedure (method) from the beginning, so here we

review the concept of the procedure (parameters, return values,

variable scopes), and also providematerials on global variables and

recursive procedure.

As stated in the “Policy 7” section, we would like to include ex-

ercises on drawing pictures (with code), so #5 and #6 is focused

to this topic. In #5, we introduce concept of 2-dim arrays, records,

and combine them to represent an image. We construct an arbi-

trary image on the image data structure in memory, and can use

simple Ruby method to write out as a PPM format image (PPM is

a simple image format used on Unix). Followings are the code to

create image data structure and writeimage method.

Pixel = Struct.new(:r, :g, :b)

$img = Array.new(200) do Array.new(300) do

Struct.new(255, 255, 255) end end

def writeimage(filename)

open(finename, 'wb') do |f|

f.puts("P6\n300 200\n255")

irb

triareaRuby

main

triareaC

write
yourself

input
 data

result
 display

hand
args

recieve
result

input
 data

result
 display

hand
args

recieve
result

Figure 6: Roles of irb command and main function in C

$img.each do |a| a.each do |p|

f.write(p.to_a.pack('ccc')) end end

end

end

In #5, we introduce the above data structure, with the exercise of

drawing a line and filling various shapes of various colors (in prior

to the exercise, a sample program to fill tow circles is presented

and explained). #6 is an integrated exercise, and report assignment

is “to create a picture which you feel beautiful.” We also provide

samplemethod to fill triangle, thick line, oval, and arbitrary convex

polygon; students are expected to combine them to construct their

code.

#7 through #10 is used to present various CS ideas to students.

Those topics are relatively independent, so the difficulty in under-

standing one of them will not affect the learning of later weeks.

#11 is the initial week for C programming. For a smooth tran-

sition, we presente Figure 6 to urge similarity among Ruby and C,

and again start from the C version of triarea (area of a triangle)

example. We prepared many exercise problems identical to Ruby

section, and specified the number of problems to be reported as

“ten” (in contrast to “one” in other weeks) to urge sufficient practic-

ing. Additionally, the latter half contains topics on solving f (x) = 0

equation (with enumeration, binary search, and Newton’s meth-

ods). This part is for skilled students, just as in numerical error

part of #1. All of the following weeks (except for the integrated

exercise week) contains advanced topics for the same purpose.

In #12, major focus is on an array. However, as C language han-

dles array access as pointer operation, concepts of address and

pointers are also covered. Exercises are mostly straightforward ar-

ray manipulation. As an advanced topic, dynamic programming is

included.

In #13, string (array of character) is introduced, and basic string

operation (string length, character replacement and the like) are

cast as exercises. As an advanced topic, pattern matching with re-

cursive function is included. Handling of 2-dim arrays in C is also

included to meet practical needs.

In #14, struct (record) type is introduced with several sample

functionsmanipulating 24bit RGB color data (1 byte for each color).

Exercises are also on the same RGB color structure. As advanced

topics, dynamic memory allocation and linked list construction are

provided.

#15 is the final week with integrated exercise. Exercise prob-

lem is to generate frame animation (actually a series of PPM files,

which can be combined to GIF animation using Unix command).

Additionally, the topic of organizing a C program into multiple

source files (including header files) is explained, and animation

7

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019. Kuno, Egi, Akazawa, Takeuchi, Sasakura, Kimoto

Figure 7: Some pictures in FP2018 report #6

exercise must be carried out by a team of 2 to 3 students. These

topic prepare our students toward larger program and team devel-

opment.

4.3 Experiences of FP2018

Here we report experiences for the school year 2018. Week #1-

#3 (introduction part) went smoothly. In #4, many students wrote

that simple recursion (such as factorial) was easy to understand.

However, for more difficult recursion (such as permutation), in-

cluded as an advanced topic, exercise was attempted by an only a

small portion of the students.

When the topic was changed to pictures in #5-#6,many students

felt it as difficult, but along with the exercises they understood

gradually, and could submit many interesting pictures (Figure 7

shows some of them) with integrated exercise report.

Middle section #7-#10 contains various relatively independent

topics, and preferable topics seemed to differ among student by

student. In #7 (topics of sorting), many student had difficulties in

manipulating arrays; we felt that exercises in array introduction

week (#3) were not sufficient, and planning to improve them. In

#8 (topics of complexity and random algorithm), many students

seemed to enjoy writing simulations such as “coin toss game” or

“dice roll game.” Object orientation (#9) is a seemingly difficult

topic, but many students have commented that such kind of “pack-

aging” will be useful in practical software development. #10 is the

final week for Ruby, and we thought that dynamic data structure

(single liked list) will be difficult. However, many students could

solve several basic exercises.

From #11, C section starts. Students had little problems with #11

because exercises are generally easy and identical to correspond-

ing Ruby version, except for advanced f (x) = 0 part.

However in #12, when address and pointer are introduced and

array access defined as pointer arithmetic plus dereference, many

students had trouble with understanding what is explained. Yet,

the could solve easy exercises based on Ruby experience (seman-

tics of a[i] is the same in Ruby and C after all). However, under-

standing accurate semantics in C is important to deal with more

complex C programming.

Another problem is that students are not very fluent with ar-

ray handling; perhaps exercises on arrays are not enough in ear-

lier weeks (around #3). In #13, students are required to act upon

C string, or array of characters, and again lack of skill with array

manipulationwas the problem. On the other hand, structure in #14

was not much problem because we restricted the topic to simple

operation only. On this part (#12-#14), “advanced” topics were not

problematic because only skilled students have attempted corre-

sponding exercises.

Finally, #15 is the second integrated exercise of team task to de-

velop an animation generating program. As students are already

used to picture generation in #6, what is new was principles of

animation plus team development, both of which were not easy

but doable. Also, note that the complexity of C program varies ac-

cording to what kind of animation to generate. For example, mi-

nor modification of supplied sample programs is not very difficult.

Therefore, this exercise seemed to adapt well against difference in

students’ levels.

4.4 Evaluation method for FP2018

As stated in Policy 5 of section 4.1, the goal of the course is pro-

gram construction skills, so we wanted all of our end-term exam

problem to be program construction problems. Additionally, we

wanted to use automatic scoring because we use CBT (computer-

based test) and the number of students is large.

Many CBT sites use Multiple-Choice (MC) tests, in which a list

of choices is presented to the examinee, and he / she chose one of

the choices as the answer. Fill-in-the-Hole (FH) tests can be con-

sidered as a variant, in which in which there are several “holes” in

the problem sentences and examinee answer the words appropri-

ate for those holes.MC tests are popular because they can be scored

by program easily. However, regarding the evaluation of program-

ming skill, appropriateness of MC tests are doubtful. We have pre-

viously experienced the case in which examinee who passed the

MC-type programming skill tests could not actually write a pro-

gram from the scratch.

Constructed-Response (CR) tests are alternatives to MC tests,

and are also widely used. In CR tests, the examinee writes an-

swer essays, math proofs, or program codes in answering area (or

type them in for CBT). CR tests on programming tasks are widely

8

Freshmen Course Incorporating Blended Learning Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019.

Figure 8: A SP test for #1 practice

used when one wants to asses examinees’ programming skills ac-

curately, because the task of “writing program down” is identical

to the actual programming task. Therefore, we wanted to use the

CR test for our end-term test. However, there is a problem — au-

tomatic scoring of program code was difficult (there are several

attempts, but they are not widely used yet).

As a solution to the problem, we have developed the Split-Paper

(SP) test. Figure 8 is a screenshot of the SP practice problem used

in our course. Stated problem is: “Construct a Ruby method which

accepts x and returns x4 − x as the result,” and the answer is filled

halfway. Students drag lines from the choice are (left area) to the

code area (right area), to construct the answer program (inden-

tation is applied automatically). The upper area shows the list of

symbols (Japanese KATKANA characters in our case) correspond-

ing to the choice lines; this list is collected by the custom Moodle

module and used for scoring. For the students to get accustomed to

SP test, we provided two practice SP tests for all the #2-#14 weeks.

For the end-term exam, we used an 80-minute CBT on Moodle,

with all problems being SP program construction.As in CL,we pre-

pared seven sets with similar problems. The number of problems

was 28. We uniformly gave 2 points for a correct answer (the an-

swer that matches one of the correct programs), and 1 point with

one difference from either of the correct programs; we used edit

distance to compute this difference. Exam scores are scaled and

added with report scores for the final mark.

4.5 Results of FP2018

Figure 9 shows the accumulated points of report score. As in

CL, frequency around 50 points (all B / b) is highest; most students

submitted an ordinary report.

Figure 10 shows the distribution of exam score for the 2017

and 2018 school year. Those distributions, especially the one for

the 2018 school year (which is fairly close to normal distribution)

50

100

150

200

250

300

350

400

0-

11

5-

11

10-

6

15-

9

20-
5

25-

19

30-

26

35-

32

40-

54

45-

176

50-

444

55-

21

60-

9

65-
0

Figure 9: Histogram for FP report scores (n=854)

total score

of students

0-3
4-7

8-11
12-15

16-19
20-23

24-27
28-31

32-35
36-39

40-43
44-47

48-51
52-55

20

40

60

80

100

120

140
2017 (n=766)

2018 (n=775)

Figure 10: Hisogram for FP2017 and FP2018 exam scores

suggests that the SP format programming test is an appropriate

method for grading students.

Improvement in 2018 was due to (1) improvement of problem

set difficulty and (2) improvement of curriculum and teaching ma-

terials/methods, as we expected.

In 2018, 95% of the students earned 8 (corresponding to 4 prob-

lems) or more points, and 77% earned 16 (corresponding to 8 prob-

lems) or more points. As we consider it difficult to obtain SP test

scores if one cannot write the corresponding program, we assumed

that many students in our classes actually obtained abilities to

write simple programs, which is the goal with our FP course.

Table 5 and 6 are a summary of inquiry in the last class hour

(#15). As in CL, students seem to recognize the class as useful, and

they have learned much from the course.

5 RELATED WORKS

There are many attempt toward effective learning on both com-

puter education (as in CL) and programming education (as in FP).

Among them, those targeted toward self-direction are close to

our approach. Isomöttönen et al. (Isömöttonen, V., Tirronen, V.,

9

Service Management Congress on DT&EL, Suderburg, Germany, May 27-29, 2019. Kuno, Egi, Akazawa, Takeuchi, Sasakura, Kimoto

Table 5: [FP] Q. Was the course useful to you?

Positive Weak
Positive

Neutral Weak
Negative

Negative No
Answer

186 331 145 20 12 15

26.2% 46.7% 20.5% 2.8% 1.7% 2.1%

Table 6: [FP]Q. Have you learned much in the course?

Positive Weak
Positive

Neutral Weak
Negative

Negative No
Answer

279 283 92 26 15 14

39.4% 39.9% 13.0% 3.7% 2.1% 2.0%

2013) describe their self-directed approach to basic programming

courses. In their course, practice session, independent work days

and review session are repeated to enhance self-directed learning.

In their approach, the lecturer has to read many lines of code, and

review session focus each students’ code; both are not practical

in our case of 800 students. Instead of the review session, our FP

textbook provides detailed explanations of exercise problems with

sample answers at the beginning of next week’s chapter, and stu-

dents study the material by themselves.

Osborne (Osborne, L. J., 2006) reports course targeted to group

work and report writing in advance to technical courses, in order

to develop a habit of learning. In our courses, several group works

are included, and the student must submit the report each week;

the net effect of these design might be similar to the above case.

Ott et al. (Ott, C., Robins, A., Shephar, K., 2016) state the im-

portance of feedbacks in computer science education and propose

rules toward good feedback practice. Although the volume of di-

rect feedback to individuals is small in our courses (due to large

class size), we also provide feedback mechanism in response to the

submitted report.

Automatic evaluation of programming skills plays an important

role in our FP design, because only with such measure, we can

implement “fully program construction” end-term exam with the

least grading cost. However, Multiple-Choice (MC) tests are not

suitable for the purpose. Simskin et al. (Simskin, M. G., Kuechler,

W. L., 2004) compares MC tests against CR test in detail and con-

cludes that MC test which measures ability same as CR test (write

a program on a paper) can be constructed, yet construction is very

difficult. We share the same view. On the other hand, our SP tests

problem can be made with a small cost; we just create a correct

program, split them line by line, shuffle them and add some extra

choice lines.

There are other researchers investigating programming tests of

similar format (Parsons, D., Haden, P., 2006); they use the term

“Parsons problems” or “code mangler tests.” Denny et al. (Denny,

P., Luxton-Reilly A., Simon B., 2008) and Cheng et al. (Cheng, N.,

Harrington, B., 2017) both investigated correlation of SP-like test

score with CR tests, and report moderate correlation. One of the

authors has obtained a similar result (Kuno, Y., Nakayama, Y.,

Kakuda, H., 2019). Therefore, we consider that our approach of

grading FP course with SP end-term tests is reasonable.

6 DISCUSSION AND CONCLUSION

We described the design and experiences of CL and FP courses

for the freshmen year. Both courses have limited class hours (15

weeks of 90minutes each), and we have to prepare students toward

advanced informatics materials in the sophomore year. Contents

for the courses are introductory programming for FP, and vari-

ous informatics-related topics (networks, principles of computers,

software development, HTML/CSS and LaTeX) for CL.

There aremany contents in both courses, and exercise is manda-

tory to learn them in spite of limited class hours. Moreover, there

is a large difference in students’ background, so we have to avoid

novices’ dropping out and experts’ boredom at the same time.

Our solution to the above problems is use of flipped classrooms,

many exercise problems fromwhich student choose a few to report

(for every week), and grading scheme which covers both novices

(all B report results in 50 points for report part) and experts (good

final grade requires a good score in the end-term exam). To im-

plement those solutions as a whole, blended learning settings with

Moodle LMS is extensively used (distribution of materials, practice

pages, report acceptance / returning, fully CBT end-term exams).

That design seems successfull, as many students commented

that studying not restricted to campus is a good point, and the

majority of students earnded close to 50 points in report score.

Difficulty in lerarning programming is also a grave problem to

be overcome in the FP course. To attack the problem, we used poli-

cies “take off first,” “varying levels of exercises,” “take precedence

on practice,” “encourage novices,” “goal as acquiring programming

skills,” “no single correct program,” and “code out of your brain.”

These also seem successful, and the majority of our students ac-

quired skills to write at least simple programs. Use of SP tests in the

end-term exam with automatic scoring was successfull and useful

at least for our class settings.

As a final remark, lots of feedback from the students (mostly

through activity reports and assignment reports in every week)

have been valuable for us to continuously improve our course de-

sign and contents settings, which is an important benefit of our

blended learning design.

REFERENCES

Cheng, N., Harrington, B. (2017). The Code Mangler: Evaluating Coding Ability With-
out Writing Any Code. Proc. SIGCSE’17, pp. 123-128.

Denny, P., Luxton-Reilly A., Simon B. (2008). Evaluating a New Exam Question: Par-
sons Problems. Proc. Fourth Intl. Workshop on Computing Education Research
2008 (ICER’08), pp. 113-124.

Isömöttonen, V., Tirronen, V. (2013). Teaching Programming by Emphasizing Self-
Direction: How Students React to the Active Role Required of Them?. ACM TOCE,
vol. 13, no. 2, article 6.

Kuno, Y., Nakayama, Y., Kakuda, H. (2019). Appropriateness of Split-Paper Test Scores
as Programming Performance Metrics. in submission.

Osborne, L. J. (2006). Thinking, Speaking, and Writing for Freshmen. Proc. SIGCSE’06,
pp. 112-116.

Ott, C., Robins, A., Shephar, K. (2016). Translating Principles of Effective Feedback for
Studentsinto the CS1 Context. ACM TOCE, vol. 16, no. 1, article 1.

Parsons, D., Haden, P. (2006). Parsons Programming Puzzles: A Fun and Effective Learn-
ing Tool for First ProgrammingCourses. Proceedings of the 8th Australasian Con-
ference on Computing Education (ACE’06), vol. 52, pp. 157-163.

Simskin, M. G., Kuechler, W. L. (2004). Multiple-Choice Tests and Student Understand-
ing: What Is the Connection?. Decision Science Journal of Innovative Education,
vol. 3, no. 1.

10

	1 Introduction
	2 General Design Policy for Two Courses
	2.1 General course settings
	2.2 Problems and solutions

	3 Computer Literacy (CL)
	3.1 CL course design policy
	3.2 Curriculum for CL2018
	3.3 Experiences of CL2018
	3.4 Evaluation method for CL2018
	3.5 Results of CL2018

	4 Fundamental Programming (FP)
	4.1 FP course design policy
	4.2 Curriculum for FP2018
	4.3 Experiences of FP2018
	4.4 Evaluation method for FP2018
	4.5 Results of FP2018

	5 Related Works
	6 Discussion and Conclusion
	References

