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Abstract

In today’s object-oriented programming languages, abstraction units
(such as classes, traits, aspects) are modified through various compo-
sition mechanisms; inheritance, parameter type binding and advice
weaving (for aspects) are representative ones. However, those compo-
sition mechanisms are all the same in that they compose objects which
implement desirable protocols. Having multiple composition mecha-
nisms defeats design orthogonally of a language, and raises (miss-) se-
lection problems. In this paper, we propose a programming language
with a unified composition mechanism. In this mechanism, methods
are individually copied and combined according to dedicated domain-
specific language description executed at compile time, in a type-safe
manner. In this language, type names and non-local variable names
within a method are converted to parameters when the method was
“unplugged” from its original context. Those parameters can be re-
bound to actual types and variables when the method is “plugged”
to another context. This mechanism can be used to implement large
part of existing composition mechanism listed above, and also some
completely new ones.

Keyword: abstraction entity, composition mechanism, pluggable methods,
strong types
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1 Introduction

In today’s procedural (imperative) programming languages, object-orientation
(O-O) is one of major trends. In O-O, provision of abstract data types
(ADTs) is an important functionality, in which (1) data (instance variables)
and operations against them (methods) are grouped together to form a unit
(an object), and (2) data are accessible only through accompanying methods,
encapsulating objects’ internals from client code.

In this paper, we use the term “abstraction unit” to represent description
unit for an object instead of the common term “class,” because we are ex-
cluding common functionalities seen in most class-based languages from the
core of our language.

Programming languages’ ADT functionality provides following merits in
software development:

• Decrease dependencies among inside and outside of an abstraction unit,
so they can be developed in parallel.

• Well-defined group of functionalities can be packaged as an abstraction
unit and incorporated into the library, which enhances code reuse and
development efficiency.

To enjoy those merits, an abstraction unit, once complete, should be in-
corporated “as is” into the client environment; any internal modifications
should not be needed. Otherwise, internals of the abstraction unit and client
environment will become interdependent and the merit noted above will van-
ish in the air.

In practice, the needs of the clients are much varied; there are many cases
in which some customization to the existing abstraction units are necessary.
In those occasions, instead of direct modification of the unit’s internals, at-
taching some “correction” from outside will be more desirable, because we
can refrain from breaking existing units and keep the merits of code reuse.

Such “correction” might be considered as a kind of unit, although it might
not provide complete functionalities by its own. Then, customization can be
regarded as a process of composing multiple (abstraction-) units.

Well-known composition mechanisms seen in today’s O-O languages in-
clude inheritance, parameterization and AOP (Aspect-Oriented Program-
ming). Historically, inheritance is the oldest, and parameterization and AOP
arrived later to compensate weak points of the classic (inheritance-only) O-O
languages.

However, having multiple composition mechanisms in single language will
make the language complex, and poses problems of which mechanism to use
in which case.

Therefore, in this paper we investigate unified framework of inheritance,
parameterization and AOP for statically typed programming languages. As
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compile-time (static) composition is pursued, we exclude dynamic condition
seen in some AOP languages (such as “cflowbelow” in AspectJ) from consid-
eration.

Contents of this paper is as follows: In section 2, we focus on major
composition mechanisms, namely inheritance, parameterization and AOP,
and analyze their core functionalities. In section 3, we discuss paths toward
unification of those functionalities, and describe our proposal. In section 4,
experimental programming language named “o3,” with unified composition
mechanism is presented. In section 5, we describe related works and compare
our proposal against them, and finally in section 6, discussion and conclusion
is presented.

2 Major Composition Mechanisms

2.1 Inheritance

In this section, we use the term “class” for abstraction unit, in order to
make description simple. Inheritance is a functionality in which new class
(subclass, child class) is defined upon existing class (superclass, parent class),
with description of differences (extensions). Inheritance is the oldest of class
composition mechanism; Simula, Smalltalk, C++, Java and many other O-O
languages include inheritance.

Although details of inheritance mechanism differs among languages, com-
mon functionalities are as follows:

• Subclasses can add instance variables to the set defined in the super-
class.

• Subclasses can add new method to the set defined in the superclass.

• Subclasses can replace implementation of methods defined in the super-
class (or append / prepend additional code to existing method bodies
in some languages).

Those functionalities allow definition of new classes by describing min-
imal difference against their superclasses; such style is called “differential
programming.”

On the other hand, differential programming is criticized for increasing
interdependencies among class and thus maintenance difficulty. A solution
for such criticism is preparing more general (abstract) differences as another
class (called “mixins” or “traits”), and composing those classes with existing
(parent) classes by means of multiple inheritance (inheriting from two or
more parent classes).

In most of statically typed O-O languages, a class without parameter
corresponds to a type. In such languages, a type corresponding to a child
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class (say C) becomes the subtype of its parents’ type (say P ), meaning
that objects of type C can be used in place of type P object (including
assignment to a variable). In this paper, we use notation C ≤ P to indicate
subtype=supertype relations.

Subtyping allows a variable of type P to hold any of its subtype instances,
and method invocation dispatches to whichever method code associated with
current object held in the variable. This mechanism is called “dynamic dis-
patch” or “polymorphism” and is the source of large flexibilities seen in O-O
languages.

On the other hand, there are criticism for such “binding” of implementa-
tion description (differential programming) and type compatibilities (subtype
relations), and some languages try to separate these two aspects. Interface
in Java languages is a representative one.

2.2 Parameterization

The term “parameter” is sometime used as “arguments” to individual opera-
tions (methods or procedures). However in this paper, the term “parameteri-
zation” stands for language functionality in which abstraction units can have
(compile-time) parameters. Languages such as Java or Scala limits each pa-
rameter to a type, while other languages (C++, CLU[11]) also allows built-in
type value (such as an integer) as a parameter.

In statically typed languages without parameterization, programmers are
occasionally forced to write duplicate abstraction units (or stand-alone pro-
cedures) identical except for their operations’ argument / return value types.
It is natural desire to abstract out those difference as parameters and use a
single definition for them.

Stated from a different viewpoint, the goal of parameterization is to ab-
stract out type names that need not be bound to specific (concrete) types
within an abstraction unit as parameters, so that more abstract and reusable
description for an abstraction unit can be obtained.

A typical use of parameterization is for container abstraction units such as
arrays. In an array type, content-type object is only stored within it and later
extracted without any operation invocation, thus there are no constraints cast
upon its parameter type.

However, some abstraction units might have constraints over their pa-
rameters. For example, in an ordered list, content-type objects should be
comparable each other. Expression of those constraints has various form,
depending on the languages:

• Operations’ signatures are explicitly declared for each parameter —
CLU.
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• Interface or class hierarchy position are specified for each parameter —
Java, Scala.

• Simply compile the whole unit after embedding parameter values, and
OK when no error is encountered — C++.

• Module-like facility that specify constraints for parameters — proposed
C++ concepts.[7]

In some languages, actual type for parameters are used to switch between
distinct implementations for the abstraction unit (such as template special-
ization for C++). In languages which allow built-in type (e.g. integer) values
as parameters, complex code construction through recursive parameter ex-
pansions are possible. C++ template metaprogramming is an representative
one.[5]

Abstraction units with parameter defines a type when all of their parame-
ters are specified. Therefore, an abstraction unit with parameter(s) defines a
type generator. Rules of type inclusion relation (covariance / contravariance
/ nonvariance) among such parameterized types differ among languages. For
example in Scala[12], type parameter definitions are annotated with variance
specifications, and variance of the resulting types are deduced from them
(examining usage of parameter types within their bodies).

Although Scala has type parameters (as noted above), inheritance can
be used to realize same effect. Specifically, a class can include abstract type
definition, and the type can be overridden with concrete type in its subclass,
as in the following:

abstract class AbsCell {

type T

val init: T

private var value: T = init

def get: T = value

def set(x: T):unit = { value = x }

}

...

val cell = new AbsCell {

type T = int; val init = 1

}

However, having multiple ways to do one thing in a language is against the
principle of orthogonally; presence of such freedom is a matter of controversy.

2.3 AOP

AOP (Aspect Oriented Programming) means ways to provide functionalities
(or “concerns”) which are “crosscutting” to the structure provided by O-
O class hierarchy. The term “aspect” is used to denote such crosscutting
functionality defined separately from traditional classes.
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The tasks such as thread synchronization, log recording, or redrawing of
the screen are often cited as representatives of crosscutting concerns (difficult
to fit with O-O hierarchy) and suitable to be implemented as aspects.

Major AOP languages or language mechanism include: AspectJ[8], SOP
(Subject Oriented Programming[13]), Composition Filter[1], and Demeter/Adaptive
Programming[10].

Functionalities provided by them can be summarized as: (1) specifying
places on program execution paths (position on the code and time range
in concern), (2) actions need be executed on those points, and optionally
(3) additional variables and methods necessary to implement the actions.
Therefore, an aspect consists of descriptions on (1) through (3) associated
with a crosscutting concern.

Code positions noted above are often specified as entry / exit point of
some method (both on caller / callee site), and method names (sometime
specified through pattern) are frequently used to indicate which method is of
concern. Additionally, some AOP systems provide dynamic (execution-time)
conditions as when to invoke actions. As described previously, we exclude
such dynamic conditions in this paper.

3 Unified Composition Mechanism

3.1 Preparation Toward Unified Mechanism

In this section, we discuss the policy toward our unified composition mecha-
nism. As a prerequisite, we note that our mechanism is supposed to replace
existing composition mechanisms (such as inheritance), and we would like to
cover functionalities of existing composition mechanisms as much as possi-
ble. Therefore, we start from listing up what operations are performed to
abstraction units with existing composition mechanism.

In case of inheritance, we reformulate the situation as composing parent
unit and child unit to define new (inherited) unit. Within this framework,
what inheritance does can be summarized as follows:

• Instance variables set of new unit is union of parent unit’s set and child
unit’s set.

• Methods set of new unit is union of parent unit’s set and child unit’s
set.

• In case of methods whose name appear both in parent’s set and child’s
set, the method in child’s set overrides one in parent’s set.

• The type associated with the new unit is a subtype of the type associ-
ated with the parent unit.
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In case of type parameterization, its functionalities are summarized as
follows:

• Some of the names (representing types or values) which are referenced
within the unit’s body are declared as parameters, and specifying con-
crete types or values to them (instantiation) result in working unit with
associated type.

• Interface (set of method signature) of a unit might depend on its type
parameter in several ways, e.g. simply substituting parameter name
with concrete types, or including set of method signatures from pa-
rameter types.

• Position of the resulting type associated with instantiated unit can be
independent of its type parameters, or might depend on some of its
type parameters in covariant / contravariant ways.

Finally, AOP functionalities are summarized as follows:

• Aspect-like unit includes description on where to and how to modify
the target (modified) unit.

• In case of “where,” method entry and method exit (both at caller and
callee site) are representative.

• In case of “how to,” specifying actions (groups of code) in the form of
another method is the usual way.

• In some case, target (modified) unit is supplied with additional instance
variables or method definitions (intertype declarations).

3.2 Basic Idea for Unification

From the above discussions, we saw that each of the existing composition
mechanisms has both (1) operation on its associated type and (2) operation
on its body (implementation). Our proposal in this paper is to incorporate
DSL (domain specific languages) which describe above operations (1) and (2).
The DSL description runs on behalf of the compiler and resulting (generated)
units are processed by the compiler.

Our language will have traditional units, some include method signature
only (as in Java interfaces) and some include method with associated body
(as in Java classes); they are called base-level units. Other (meta-level)
units includes DSL descriptions; DSL operations accept base-level language
constructs (units, types, method signatures, method bodies) as passive data
and builds new units based on them.

In the following, we describe our idea on both (1) and (2), respectively.
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X = cluster[t:any]

var k:int

p = proc(v:t)

end

end

k := k + 1

a[0] := k

var a:array[t]

cluster X

un-
plug

p = proc(v:t)

[t:any, var k:int

var a:array[int]]

metacluster Yre-
plug

var k:int

p = proc(v:int)

end

k := k + 1

a[0] := k

var a:array[int]

Figure 1: Unplugging and plugging of a method

Operations Over Types

In this paper, based on the principles of abstract data types, we define a type
as “a set of method signatures,” where a method signature constitutes of
method name, a list of types corresponding to its parameters, and its return
value type (if one exist). Further, we assume that types has a supertype-
subtype relation among them (thus form a type hierarchy). As the result, a
type has the following operations:

(a) Define set of signatures corresponding to that type.

(b) Specify position of that type in the type hierarchy.

As for (a), we assume that a type has no signature associated when it is
declared first, and there are DSL operations which selectively add existing
signatures (obtained from other types), with modifications if necessary.

As for (b), we provide DSL operation which add new supertype-subtype
relations to current type set. When those relations are arbitrary added,
incompatible supertype-subtype pair might be formed (e.g. a subtype do
not have operation signatures included in its supertype). Such situations are
checked after DSL execution has finished and treated as compile-time errors
(as the DSL is executed during compilation).
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Operations Over Implementations

An abstraction unit contains a set of instance variable definitions and a set
of method definition, and can create an instance (object). When a method
associated with its originating abstraction unit is invoked, the body of the
method is executed (that is, statements in the body is executed with nec-
essary expression evaluation); instance variables of the object are accessed
during the execution process.

In majority of existing O-O and AOP languages, modifications of existing
code are performed through swapping by or appending / prepending of new
code in the form of a method as a whole. Therefore, we decided to follow
the same course and not to modify code inside a method; DSL operations
act upon implementation in the following way (Figure 1):

(c) Extract a method as a whole from existing abstraction unit, and insert
into the target (new) abstraction unit. There are choices of either
replacing the existing method, or appending / prepending new method
body to the existing method.

From the above description, it follows that each method belonging to
an abstraction unit can be “unplugged” from the original context, and “re-
plugged” to the new context. Conceptually, at the point of unplugging,
references to the surrounding (instance-) variables and (parameter-) types
are automatically converted to (variable- and type-) parameters, and those
parameters are rebound when the body is replugged.

Therefore, parameter mechanism is built into our proposal language as
one of the base functionalities, and inheritance or aspects are implemented
with those functionalities. Such choice seems natural, because many abstract
computational models (such as lambda calculus) include name substitution
as primitive operation.

4 o3: An Experimental O-O Language

4.1 Design Guidelines And Program Structure

We have designed and developed a “concept-of-proof” O-O language named
o3, in order to evaluate feasibility and effectiveness of the proposal described
in the previous sections. Design guidelines of the language is as follows:

• Portions not directly related to the proposal should be similar to other
“common” O-O languages.

• Portions not directly related to the proposal should be simple, as much
as possible.
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program ::= ( interface | cluster | metadef ). . .
interface ::= idn = interface [ param ] annot. . .

procdcl. . . end

cluster ::= idn = cluster [ param ] annot. . .

vardef. . . procdef. . . end

annot ::= @idn [ [ ( idn | string | integer ) . . . ]

]
param ::= [ ( idn : type ). . . ]

type ::= idn [ [ type, . . . ] ]
prochdr ::= proc ( ( idn : type ). . . ) [ : type

]
procdcl ::= idn = prochdr end

procdef ::= idn = prochdr stat. . . end

vardef ::= var idn : type [ := expr ]
stat ::= vardef | assign | astore | rstore |
simpcall

| return [ expr ] | whilest | ifst

whilest ::= while expr do stat. . . end

ifst ::= if expr then stat . . . [ elif expr then

stat . . . ] . . .
else stat. . . end

assign ::= idn := expr

astore ::= idn [ expr ] := expr

rstore ::= idn . idn := expr

expr ::= simcall | uop expr | expr bop expr | (

expr )

uop ::= + | - | !

bop ::= = | != | > | >= | < | <= | + | - | * | / |
%

| && | ||

simpcall ::= ( primary | simpcall ) ! idn(

expr, . . . )

| $type$ idn ( expr, . . . )

primary ::= idn | integer | string | true | false

| nil

| primary [ expr ] | primary . idn

. . . — 0 or more repetiotion
, . . . — comma-separated list

[ ... ] — optional

Figure 2: Summarized syntax of o3 language

(There are ; at the end of every statement, which are optional.)
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• Portions related to the proposal should clearly be separated from other
part of the language.

A simplified syntax of o3 is shown in Figure 2. A program consists of
one or more modules; a module is one of four kinds: interface, cluster (cor-
responds to class in other languages), metaprocedure, and metacluster.

An interface defines a type (set of method signatures), and a cluster de-
fines a type and its implementation (set of instance variables along with
set of method definitions). We use the term “cluster” in place of “class” be-
cause our cluster do not provide an inheritance facility; inheritance and other
composition functionalities are provided through our proposal composition
mechanism described below.

As noted earlier, we state type parameter as basic mechanism in our
language. Therefore, both an interface and a cluster may have type param-
eter(s). A metaprocedure should have one or more type parameter(s) to act
upon. As for metaclusters, meaning of presence / absence of type parameters
is same as for clusters; a metacluster with type parameters define multiple
types and their corresponding implementations according to the parameters.

Both metaprocedures and metaclusters contain type / cluster construc-
tion DSL (simply “DSL” for short); their syntax and functionalities are ex-
plained below. Note that execution of DSL occurs at compile-time.

4.2 Baselevel part of o3 language

In this section, we describe baselevel part (O-O without inheritance) of o3
language. In o3, method invocations are denoted with the form “obj!method(· · ·)”
or “$type$method(· · ·).” The former corresponds to ordinary invocation
with dynamic dispatching, and the latter to “static” invocation directly spec-
ifying typenames, which are used to create instances (in o3, method named
“create” is handled specially and used to create new instances).

We list builtin interface / cluster in Figure 3. any is an interface, and is
used as the supertype for all types in o3. bool, int and string are Boolean,
integer and string values respectively; they are designated as builtin because
they have literal forms, and bool is exclusively used for if / while conditions.
array defines array types; it is designated as builtin for providing basic
container object. array has an single type parameter to specify values stored
the array.

Type hierarchy of o3 is shown in the Figure 5. Every type T is a (direct
or indirect) subtype of any (T ≤ any). This policy is chosen because we need
to define type parameters that accept arbitrary types. All other supertype-
subtype relations are explicitly defined through DSL operations.

As multiple supertypes can be designated for a type (through DSL oper-
ations), the relation ≤ forms a semiorder, and any becomes the maximum

12



any = interface end

bool = cluster

equal = proc(self:bool, x:bool):bool

end

not = proc(self:bool):bool end

print = proc(self:bool) end

end

int = cluster

equal = proc(self:int, x:int):bool end

lt = proc(self:int, x:int):bool end

gt = proc(self:int, x:int):bool end

le = proc(self:int, x:int):bool end

ge = proc(self:int, x:int):bool end

minus = proc(self:int):int end

plus = proc(self:int):int end

add = proc(self:int, x:int):int end

sub = proc(self:int, x:int):int end

mul = proc(self:int, x:int):int end

div = proc(self:int, x:int):int end

mod = proc(self:int, x:int):int end

print = proc(self:int) end

end

string = cluster

equal = proc(self:string,

x:string):bool end

lt = proc(self:string, x:string):bool

end

gt = proc(self:string, x:string):bool

end

le = proc(self:string, x:string):bool

end

ge = proc(self:string, x:string):bool

end

add = proc(self:string,

x:string):string end

size = proc(self:string):int end

print = proc(self:string) end

end

array = cluster[elt:any]

create = proc():array[elt] end

size = proc(self:array[elt]):int end

push = proc(self:array[elt], x:elt)

end

store = proc(self:array[elt], i:int,

x:elt) end

fetch = proc(self:array[elt],

i:int):elt end

end

Figure 3: Interfaces for o3’s builtin clusters
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stack = cluster[elt:any]

var arr:array[elt] := $array[elt]$create()

var ptr:int := 0

create = proc():stack[elt] return self end

push = proc(self:stack[elt], x:elt)

if arr!size() > ptr then

arr[ptr] := x; ptr := ptr + 1

else

arr!add(x); ptr := ptr + 1

end

end

pop = proc(self:stack[elt]):elt

if ptr >= 0 then ptr := ptr - 1 end

return arr[ptr]

end

isempty = proc(self:stack[elt]):bool

return ptr <= 0

end

end

test = cluster

main = proc()

var st:stack[int] := $stack[int]$create()

st!push(1); st!push(2); st!push(3)

st!pop()!print(); st!pop()!print()

end

end

Figure 4: A sample program in o3 (stack ADT)
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any

bool int

A B

L1

G?

L0

Figure 5: Type hierarchy of o3

metadef ::= idn = ( metaproc | metacluster )
[ param ] annot. . . mstat. . . end

mstat ::= mcall | mfor | mif

mfor ::= for idn: mexp do mstat. . . end

mif ::= if mexp then mstat . . . [ elif mexp

then mstat . . . ] . . . else mstat. . . end

mexp ::= mcall | type | $type$idn | string

mcall ::= mexp!idn[ mexp. . . ]

Figure 6: Summarized syntax of o3’s metalevel DSL

element. Therefore, for any types A and B, there always exist common upper
bound type and their least elements (which may or may not be unique). On
the other hand, for a pair of types A and B, their common lower bound may
or may not exist; that depends on the cases.

In Figure 4, we show a simple o3 program. The code defines a stack
ADT, then main create a stack object, pushes several values on it, popes
some and prints. As explained above, create is handled specially in o3
— variable named self is automatically defined and holds newly created
instance before execution of the method body.

4.3 Metalevel part of o3 language

As described earlier, metaprocedures and metaclusters include DSL descrip-
tions, in the same syntax. Their difference is that metaclusters construct
cluster definition, while metaprocedures are called from metaclusters with
associated parameter(s) to execute series of DSL operations. Therefore, the
objective of metaprocedures is to factor out common DSL operations with
meaningful names, providing measure for structuring and abstraction.
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Table 1: Metalevel objects and their DSL API (summary)
type

add proctype[proc] Add proc’s signature to
target

add proctypes[type] Add type’s all procs’ signa-
tures to target

add super[type] Add type as target’s super-
type

proctypes[] Retuns target’s set of proc

cluster

add procdef[proc] Add proc’s body to target

add procdefs[cluster] Add cluster’s all procbod-
ies to target

procdefs[] Retuns target’s set of proc
with body

proc

add body after[proc] Append proc’s body to tar-
get

add body before[proc] Prepend proc’s body to
target

name matches[string] Test if proc’s name
matches pat

As shown in figure 6, DSL code consists of metastatements. A simple
metastatement has similar syntax as o3 baselevel method invocation, whose
API is summarized in Table 1.

When a method is unplugged from existing cluster, instance variables and
type parameters referred by the method body is automatically converted to
variable / type parameters associated with the body (currently o3 does not
have syntax to specify variable parameters directly). Thereafter, when the
method is replugged to the other cluster being constructed, variable parame-
ters are rebound to the instance variables of that cluster (new instance vari-
ables are automatically added if no such instance variable exist). Therefore,
if one tries to replug multiple method with conflicting instance variables, an
error is signaled. 1

Major metaobjects are types (set of method signatures with associated
supertype set), clusters (same as types, plus method bodies) and methods
(signature with optional body). There also is “method set” objects to handle
groups of methods at once.

Additionally, string object (to specify method names and patterns) and
Boolean object (to specify conditions for if metastatements) is also provided.
Types of those metaobjects are dynamically checked at DSL execution stage,

1Alternatively, we could provide renaming facility or simply treating those variables as
distinct ones; such design choices are for future investigations.

16



which is a part of the compilation stage.
There also are two compound metastatements, namely if and for. If is

used to conditionally execute part of the operations. For metastatement is
used to iterate over elements of a set.

4.4 Example: inheritance and logging aspect

In this section, we present an example with inheritance and logging aspect
defined as metaprocedures (figure 7). The cluster accum defines an object
that accumulate integer values. The cluster defines methods create (for
creating an object), inc (for incrementing value) and get (for reading cur-
rent value). Then, we want to define extended cluster which has additional
method reset, which clears the value inside. In preparation, we defined a
cluster named exaccumimple which includes implementation for the exten-
sion.

Actual inheritance operation is performed with a metaprocedure named
extends, which receives three type parameters target, parent and child

and copies methods defined in parent and child to target. In the metapro-
cedure body, parent is added to the set of target’s supertypes first. Then,
set of methods defined in parent is copied to target, and then set of meth-
ods defined in child is copied likewise. As no selection or modification is
required here, coping is done all at once (as set operations). Alternatively,
for statement could be used to enumerate each method one by one (with
selection or modification when necessary).

Next, we would like to count occurrence of modification operation (add
and reset) invocations. This time, recording action is defined in another
cluster countimpl. With its help, metaprocedure addcounter is used to
modify the target cluster. First, the metaprocedure appends the body of
$countimpl$create (which initialize count value) to the method create.
Then, the metaprocedure copies signature and implementation of getcount
(which obtains the count value). Finally, the metaprocedure enumerates all
methods of the target cluster one by one, and for modification operations
(distinguished by the method names in this example), the body of countup
method is appended.

Actual extension object is defined by the metacluster exaccum; the metapro-
cedures extends and addcount are invoked from within its body. Within a
metacluster, identifier “selftype” represents the type and cluster being de-
fined by that metacluster.

4.5 Constraints applied at DSL execution

As shown above, our DSL allows flexible construction / modification of sub-
type relations, method signatures contained in a type and method definitions
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accum = cluster

var value:int

create = proc():accum value := 0; return self end

inc = proc(self:accum, n:int) value := value + n end

get = proc(self:accum):int return value end

end

exaccumimpl = cluster

var value:int

reset = proc(self:accum) value := 0 end

end

extends = metaproc[target:any, parent:any, child:any]

target!add_super[parent]

target!add_proctypes[parent]

target!add_proctypes[child]

target!add_procdefs[parent]

target!add_procdefs[chlid]

end

countimpl = cluster

var count:int := 0

create = proc():countimpl return self end

countup = proc(self:countimpl) count := count + 1 end

getcount = proc(self:countimpl):int return count end

end

addcount = metaproc[target: any]

$target$create!add_body_after[$countimpl$create]

target!add_proctype[$countimpl$getcount]

target!add_procdef[$countimpl$getcount]

for p: target!procdefs[] do

if p!name_matches["^(inc|reset)"] then

p!add_body_after[$countimpl$countup]

end

end

end

exaccum = metacluster

selftype!extends[accum, exaccumimpl]

selftype!addcount[]

end

Figure 7: A sample with DSL code (inheritance and logging)
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signagure

<

definition

<<

metacluster X

replaced with X

p = proc( T1, T2, ... Tn ): Tr

p = proc( U1, U2, ... Un ): Ur

Figure 8: Signatures and compatibility of methods

associated with a cluster. However, as noted before, when there remains any
inconsistency among resulting metaobjects, DSL runtime error (compile-time
error for o3 compiler) is signaled. Actual processing and conditions need be
satisfied are as follows:

• There should be no cycles in supertype-subtype graph.

• When a signature is added to a cluster, when the type of its first pa-
rameter is a supertype of the cluster’s type, the type of first parameter
is substituted by the cluster’s type. 2

• When multiple method signatures with same method name are added
to a cluster, the number of arguments and return value should match
among them. Also, in the cases where substitution described above
does not apply, the type of each argument becomes the minimal element
of common upper bound of types for the corresponding argument of the
signatures, and the type of return value becomes the maximal element
of common lower bound of types for the return value of the signatures.
When such minimal / maximal element is not uniquely determined, an
error is signaled.

• When multiple method implementations with same method name are
added to a cluster, the one added last survives (overwriting).

• When a method implementation is added to a cluster, method signa-
tures with same name should already be associated with the cluster,
and the implementation should be compatible with them. “Compati-
ble” in this case means that each of the implementation、s argument

2The reason for such substitution is that the first parameter plays the role of receiver,
over which dynamic dispatch is done. The choice of not applying such substitution is also
provided through another metaobject API calls.
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Table 2: The size of o3 implementation
#. of lines

SableCC grammer 255
Java code 2400

type should be a supertype of corresponding signature’s type, and the
implementation’s return type (if any) should be a subtype of signature、
s return type (Figure 8). 3

• When before or after methods are added to a primary method, the num-
ber of arguments for methods being added should be less or equal to the
number of arguments for the primary method, and existing argument’s
types should satisfy conditions described above. (Non-) existence of
return values are arbitrary (return value is ignored). 4

5 o3 Implementation

We use SableCC[6] compiler-compiler for lexical / syntax analysis, along
with its syntax tree construction / traversal facilities. Other portions of the
compiler are written in Java; we show the code sizes in Table 2.

In the semantic analysis phase, information from interfaces and clusters
are gathered in the type table, along with their syntax tree for method bodies.
As for metaprocedures and metaclusters, DSL syntax trees are stored in the
same type table, and then interpreted execution of metacluster DSLs are
performed. During the DSL execution for a metacluster, empty type data
structure is first created and then modified according to DSL description, and
resulting structure is type- and semantic-checked at the final stage. Finally,
code generation is performed for both baselevel clusters and metaclusters
(Figure 9). Current compiler is an experimental one and do not support
separate compilation.

The compiler generates code in plain C language, and after the code is
compiled by a C compiler, the code can be executed. Every object has a
method table pointer as the first component, and instance variables part
(dependent on the object’s type) follows. A method table stores pointer to
method vector, and a method vector points to bundle of code pointers (C
language function pointer). In case of a method with primary portion only,

3We are planning to supplement DSL API with functionality to insert conversion code
when those compatibility constraints.

4We are planning to supplement DSL API with functionality in which after methods
can accept the return value form the primary (or previous after) method, process it, and
return substitute value.
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Figure 9: The structure of o3 compiler

its method vector contains a single code pointer, and when before / after
code are added, corresponding method vector stores list of code pointer in
execution order. The number of before / after methods (code pointers) are
stored in the corresponding method table entry.

Implementations for the builtin clusters are described as special (system-
only) annotation, and C language code for them are generated and prepended
to the C language output prior to the code generation for actual program.
For storage management, we just use conservative GC[3].

6 Related Works

Although there are many research on inheritance, type parameters (generics)
and AOP, unification of these language mechanisms is not much investigated.

As described before, Scala[12] allows inheritance to function as type pa-
rameterization through overriding abstract type member(s) of parent classes
on their subclasses. However, Scala language design do have type parame-
terization by itself and does not intend to unify it with inheritance.

Additionally, inheritance itself is a much complex and (too-) powerful
language mechanism; aim of our research is to decompose inheritance into
more primitive functionalities.

Bergmans et. al.[2] are proposing a language which unify inheritance and
AOP with execution-time (dynamic) property deduction. However, their
proposed framework does not consider static typing, and incur much overhead
on method dispatch due to dynamic computation; we are aiming for more
static and efficient mechanism with compile-time type checking, which we
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believe is important for building robust systems.

Controlling method dispatch and inheritance operation can also be per-
formed through metaobject protocols (MOP); [9] and [4] are representatives
ones. However, MOP is based on inheritance as a basic mechanism, and con-
trolling code are injected by subclassing existing meta-objects and overriding
some of the meta-methods (such as meta-method invocation); they are not
aiming at replacing inheritance with set of more primitive operations.

7 Discussion and Conclusion

In this paper, we have proposed a programming language with an uni-
fied composition mechanism, with which inheritance, type parameterization,
AOP and similar mechanism can be constructed.

In our proposal, parameter substitution is built into the language core,
and compositions are performed through extracting and combining signa-
tures and method implementations from existing abstraction units. To make
such operations possible, our language possess dedicated meta-level DSL (in
addition to ordinary — base-level — language core). Our compiler executes
DSL description at compile time (with an interpreter built into the compiler),
through which composition operations are actually performed.

To asses practicality and problems of the above scheme, we have de-
signed and implemented an experimental object-oriented programming lan-
guage “o3” as a test bed. First experiences from this language is that such
language can actually be built, and can be used a lot like ordinary (existing)
O-O languages.

However, simple declaration such as “extends superclassname” in exist-
ing O-O languages have to be replaced with somewhat more lengthy code
at the using sites, inheritance implementation codes set aside. Major com-
plication is that implementation of additional parts (additional methods or
overriding methods) have to be described separately from the metacluster
which corresponds to “subclass” unit. If those two portions could be de-
scribed as a single unit, the language will look much similar to existing O-O
language (with respect to inheritance usage).

We could write AOP-like functionalities (excluding controls with dy-
namic properties) without much difficulty. However, injection specifications
(“pointcuts” in AspectJ terms) are currently limited to pattern matching
with respect to method names. More general and flexible design would be to
add annotations to methods and use them for injection specification. When
adding annotation at source-code level is undesirable, DSL API could be
enhanced with additional functionalities that examine abstraction units and
method signatures/implementations and attach appropriate annotations.

Current DSL API choices are minimal because we have proposed small

22



proof-of-concept implementation. We are going to investigate more powerful
API and their semantics so that various useful language mechanisms could
be built using them, in type-safe manner.

This work was supported by JSPS KAKENHI Grant Numbers
25330076.
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