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Abstract—Explicit-state model checking which is conducted by state space search has difficulty in exploring satisfactory state space

because of its memory requirements. Though bitstate hashing achieves memory efficiency, it cannot guarantee complete verification.

Thus, it is desirable to provide a reliability indicator such as a coverage estimate. However, the existing approaches for coverage

estimation are not very accurate when a verification run covers a small portion of state space. This mainly stems from the lack of

information that reflects characteristics of models. Therefore, we propose coverage estimation methods using a growth curve that

approximates an increase in reached states by enlarging a bloom filter. Our approaches improve estimation accuracy by leveraging the

statistics from multiple verification runs. Coverage is estimated by fitting the growth curve to these statistics. Experimental results

confirm the validity of the proposed growth curve and the applicability of our approaches to practical models. In fact, for practical

models, our approaches outperformed the conventional ones when the actual coverage is relatively low.

Index Terms—Coverage estimation, model checking, bitstate hashing

Ç

1 INTRODUCTION

MODEL checking [1] has been widely used for verifica-
tion of hardware design and communication proto-

cols in recent years. In explicit-state model checking tools
such as SPIN [2], Mur’ [3], and Java PathFinder [4],
verification is performed by exhaustive state space search,
which explores counterexamples that violate formal speci-
fications defined by temporal logic. One of the serious
problems model checking faces is the state explosion
problem. Because memory requirements for exhaustive
state space search depend on the number of reachable states
of a graph, it is infeasible to verify huge scale models. To
deal with the state explosion problem, several probabilistic
approaches have been proposed [5], [6], [7].

Bitstate hashing [6], proposed by Holzmann, is such a
probabilistic approach designed to reduce the memory
requirements. For memory efficiency, it uses a data
structure called a bloom filter [8] to store reached states in
place of a hash table. A bloom filter is probabilistic in the
sense that there is a possibility of judging an unreached
state as already reached. Therefore, model checking by
bitstate hashing does not guarantee complete verification.
Accordingly, in probabilistic approaches, it is desirable to
exhibit a reliability indicator to users. One representative of
such indicators is a coverage estimate. This is useful for

sequential hashing [6], [9], which improves total coverage
by repetitive verification with different hash functions or
with randomization to decide how many searches should
be performed.

However, coverage estimation for bitstate hashing is
difficult, especially when actual coverage is low. The
difficulty is mainly caused by the lack of information on a
state space. From verification results, a few pieces of statistical
information (such as the number of reached states, the
number of hash conflicts, and the size of a bloom filter) are
available for estimation. Thus, it is significantly difficult to
achieve high accuracy since coverage needs to be estimated
from this limited amount of information.

In this paper, we propose coverage estimation methods
using a growth curve that approximates an increase in
reached states by enlarging a bloom filter. The growth curve
models a proportional increase in reached states with a
small bloom filter and saturation of the increase with a large
one. To improve the accuracy of estimation, our approach
leverages statistical information from multiple verification
runs that are performed with bloom filters of different sizes.
By fitting the growth curve to results from multiple runs,
the total number of reachable states, an unknown parameter
of the curve, is estimated.

The rest of this paper is structured as follows: Section 2
reviews bitstate hashing and reliability indicators for prob-
abilistic verification approaches. In Section 3, we discuss the
characteristics of bitstate hashing and introduce a growth
curve that describes the increase in reached states by
enlarging a bloom filter. Then, we propose our coverage
estimation approaches by curve fitting. Section 4 details
the experimental results. In Section 4.1, we confirm whether
the growth curve describes the increase in reached states
suitably for practical models. In Section 4.2, we measure the
accuracy of our approaches and compare it to the conven-
tional approaches. In Section 5, we discuss the applicability of
our approach to practical models. Finally, the conclusion
ends the paper.
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2 BACKGROUND

For bitstate hashing, a reliability indicator such as a
coverage estimate is useful for users to decide their next
action. However, the lack of statistical information on
verification makes it difficult to provide a reliability
indicator with high accuracy. Although several reliability
indicators for probabilistic approaches including bitstate
hashing have been proposed, these indicators are not
accurate enough for a verification run that covers a small
portion of state space or inapplicable to bitstate hashing.

2.1 Bitstate Hashing

Bitstate hashing, one of the probabilistic approaches, was
introduced by Holzmann to reduce memory requirements
to store reached states. In model checking, reachable states
increase explosively as a target system becomes complex.
Especially in explicit-state model checking, since an
exhaustive search has to store all reached states, the
requirement is proportional to the number of reachable
states. Thus, it is difficult to verify complex systems by
model checking. Bitstate hashing improves memory effi-
ciency by managing reached states with a bloom filter.
However, completeness of verification is sacrificed.

A bloom filter is a data structure to test whether an
element is a member of a set and consists of a bit array of
m bits. There are two basic operations: add and query. These
operations are realized with distinct k hash functions that
have ranges from 0 tom� 1. The k hash values of an element
are used as indices to the bit array, as seen in Fig. 1. To add an
element to a bloom filter, all bits corresponding to k hash
values of the element are set to 1. To query whether an
element is a member, all bits at which k hash values point are
checked. The element is judged to be a member only if all the
bits are 1. A bloom filter is probabilistic because it can cause a
false positive. That is, a bloom filter misjudges a nonmember
as a member when its hash values collide.

Because of the probabilistic behavior of a bloom filter,
bitstate hashing is generally not complete. If a false positive
occurs, the collided state is never visited, and its successor
states might not be visited. Thus, some reachable states are
omitted from exploration. As a result, bitstate hashing
cannot guarantee exhaustive verification.

It is therefore highly desirable to provide a reliability
indicator which represents the achievement of verification
because a reliability indicator helps users decide their next
action at the end of a verification run. For instance, if it were
found that only a tiny portion of reachable states is
explored, users would try to reduce states by abstracting
models. If more than a quarter of states were covered, they

might choose to perform repetitive verification runs by
sequential hashing [6], [9] or by swarm verification [10].

However, it is difficult to achieve a reliability indicator
with high accuracy because of the lack of statistical
information. The statistics of bitstate hashing obtained from
verification results are the numbers of reached states, hash
conflicts, and bits in a bloom filter. The number of reached
states (hash conflicts) can be measured simply by counting
the number of additions (conflicts) of states in a bloom
filter. Reliability indicators for bitstate hashing have to be
calculated with these limited statistics.

2.2 Reliability Indicators

Including a coverage estimate, several reliability indicators
for probabilistic verification have been proposed. We review
such indicators for probabilistic verification approaches:
bitstate hashing and random walk state space exploration.

2.2.1 Bitstate Hashing

For bitstate hashing, coverage estimates [2], [11] and hash
factor [6] are common reliability indicators. These indicators
are calculated from the number of reached states N and the
size of a bloom filter m. Though the existing reliability
indicators are calculated from these statistics, the difference
originating from graph structures of models is not
considered at all.

SPIN version 4 provides a coverage estimate at the end of
verification [2]. When a run has stored N states in a hash
array of m bits, the coverage estimate CovStern is computed
using the next equation by Stern:

CovStern ¼ N
lnð1� 1=mÞ
lnð1�N=mÞ : ð1Þ

This equation takes neither the number of hash functions
nor the difference among models into account. The accuracy
is not very high when the actual coverage is low.

Another coverage estimation, which was proposed by
Dillinger and Manolios [11], uses the expectation of the
number of state omissions EðoÞ. A state omission represents
a state being excluded from a verification run by false
positives. The expectation of state omissions EðoÞ is defined
as follows:

EðoÞ � 2
XN�1

i¼0

f1� ð1� 1=mÞikgk;

where k is the number of hash functions. With EðoÞ, the
coverage estimate CovDillinger is calculated as

CovDillinger ¼
N � EðoÞ

N
: ð2Þ

Though (2) leverages the number of hash functions, the
difference in omission rates among models is ignored.
Therefore, if the number of actual omissions significantly
differs from that expected, an estimation error becomes large.

Hash factor [6], another reliability indicator that is used in
SPIN, is defined by m=N . It represents how much memory
per state is available. Though it does not directly represent a
coverage estimate, hash factor is useful to determine
whether the state coverage accomplished by a single run is
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Fig. 1. Bloom filter.



sufficient, that is, whether the results are reliable. However,

in the situation in which the actual coverage is low and one

tries to improve the coverage by multiple verification runs,

hash factor is not appropriate as a reliability indicator for

whole verification.

2.2.2 Random Walk Exploration

Other than probabilistic model checking such as bitstate

hashing, random walk state space exploration is another

approach for memory-efficient verification [12], [13], [14].

Also, in random walk exploration reliability indicators

should preferably be obtained.
Tronci et al. [15] used random sampling to estimate

coverage. In their method, a coverage estimate is defined as

the proportion of reached states among randomly sampled

states. When trying to apply their approach to bitstate

hashing, we have to sample states uniformly from reachable

states. However, it is unclear whether a state is reachable at

the start of verification. In addition, a large number of

sample states, which increase memory requirements, will be

necessary for high accuracy. For this reason, it is considered

difficult to obtain an estimate with high accuracy.
Lurch [12] uses saturation effects [16] to determine when

to stop a random walk. Lurch stores hash values for each

state that it finds in order to check whether the hash value is

new. In other words, a bloom filter with a single hash

function is used to check whether a state is already reached.

When the percentage of new states reaches some saturation

point (close to 0 percent), Lurch is assumed to be unlikely to

find any more interesting information. Thus, Lurch does not

search further.
Monte Carlo Estimation [14] by Grosu and Smolka

indicates how many random walks should be executed to

guarantee the probability that an error found by further

random walks is less than given �. However, it needs to be

given a lower bound of a predicted error rate �. It is, in

general, difficult to know such a lower bound � in advance.
These indicators used in Lurch and Monte Carlo

Estimation are utilized as a means to decide when to stop

exploration. For both indicators, the parameters (the size of

a bloom filter in Lurch and the pair of � and � in Monte

Carlo Estimation) have to be chosen adequately, in tune

with the characteristics of models. Moreover, these indica-

tors are not applicable to bitstate hashing.

3 COVERAGE ESTIMATION

Our strategy is to compensate for the lack of information by

leveraging results from multiple verification runs. In the

existing approaches, the number of reached states and the

size of a bloom filter are the only statistics used for coverage

estimation. The differences in the characteristics of models

were not considered. Our strategy is based on an assump-

tion that these statistics from several runs should reflect the

characteristics of models such as a graph structure.
In our approaches, coverage is estimated by a curve fitting

technique that uses the statistics from several runs. We use a

growth curve that approximates the increase in reached states

caused by enlarging a bloom filter for coverage estimation.

3.1 Analysis

In this section, we analyze the increase in reached states by
enlarging a bloom filter in bitstate hashing and introduce an
approximated growth curve. The growth curve models the
increase of reached states, which is proportional to the size
of a bloom filter if it is small enough. In addition, the growth
curve models the saturation of the increase in reached states
with enlargement of a bloom filter.

Coverage achieved for some practical model is plotted in
Fig. 2. The x-axis is a binary logarithm of the size of a bloom
filter and the y-axis is the measured coverage. As shown in
Fig. 2, coverage in bitstate hashing describes a growth curve
when a bloom filter enlarges exponentially. The curves have
horizontal asymptotes at coverage of 0 and 100 percent.

In the discussion below, let 2tð¼mÞ be the size of a bloom
filter, k be the number of hash functions, N be the number
of reached states in a single verification run, and M be the
number of reachable states.

3.1.1 Growth Rate of Reached States

Obviously, reached states increase as a bloom filter
enlarges. This is because a part of states that were regarded
as reached by hash collisions turns out to be regarded as
unreached. With a small enough bloom filter, the increase in
reached states is proportional to the size of the bloom filter.

In the situation in which a bloom filter is small enough
for a reachable state space, all bits are to be set to 1 at the
ends of exploration. We define this condition as a saturated
condition. A verification run is considered to end in a
saturated condition if it uses a bloom filter smaller than that
used in a saturated condition.

Let X represent a random variable describing the
number of bits that are altered to 1 from 0 by a state
transition. The average total number of on-bits after adding
n states, Bn, is represented as

Bnþ1 ¼ Bn þEBn
½XjX > 0�

¼ Bn þ
Xk
j>0

j
P

Bn
ðX ¼ jÞ

PBn
ðX > 0Þ

¼ Bn þ
EBn
½X�

PBn
ðX > 0Þ ;

where B0 ¼ 0. PiðAÞ and Ei½X� respectively represent the
probability of an event A and the expectation of X when the
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number of on-bits is i. Ei½XjX > 0� represents the condi-
tional expectation of X given the event X > 0. If a newly
visited state is regarded as already visited, the state is not
added to a bloom filter, and in this case X ¼ 0 (in short, n is
not incremented). This is the reason the conditional
expectation given the event X > 0 is used.

In the case of k ¼ 1, for example, Bn is simply defined as

Bnþ1 ¼ Bn þ 1;

because a single bit is altered to 1 when a new state is
added. This implies that, at the end of exploration, the
number of on-bits is equal to the number of reached states.
Thus, in a saturated condition, reached states also halve if a
bloom filter halves, that is, the number of reached states is
proportional to the size of a bloom filter.

Next, let us consider the case of k ¼ 2. When i bits are set to

1, the next addition of a state sets Ei½XjX > 0� ¼ ð2m�
1Þ=ðmþ iÞ bits to 1 from 0 on average since

PiðX ¼ 1Þ ¼ ðm� iÞð2iþ 1Þ=m2; P iðX ¼ 2Þ
¼ ðm� iÞðm� i� 1Þ=m2;

and PiðX > 0Þ ¼ 1� ði=mÞ2. Then, we have

Bnþ1 ¼ Bn þ
2m� 1

mþBn
: ð3Þ

The smallest NS such that BNS � m is considered as the

number of reached states that is necessary to fill all m bits

with 1. In other words, NS is the average number of reached

states in a saturated condition.
Fig. 3 plots the fraction NS=m which is computed by (3).

As seen in Fig. 3, NS=m approaches about 0.75 as m

increases. This indicates that, in saturated condition,

reached states increases approximately in proportion to

the size of a bloom filter m when m is larger than 210.
A similar discussion is applicable for k larger than 2.

Thus, in a saturated condition, reached states can be
generally regarded as proportional to the size of a bloom
filter. Therefore, with a growth rate of reached states r, the
relation between t and N in a saturated condition is
approximated by the following differential equation:

dN

dt
¼ rN:

The growth rate r is considered to be ln2 since the number
of reached states N is proportional to the size of a bloom
filter 2t.

3.1.2 Inhibition Rate

The proportional increase never continues because the
number of reachable states is finite. The increase slows
down as the number of reached states comes close to the
number of reachable states. We model this phenomenon by
using an inhibition rate q, which describes the inhibition of
the increase. An inhibition rate q is defined so that it reflects
the differences in the number of hash functions.

By using a bloom filter large enough to cover a whole
state space, reached states no longer increase because the
number of reachable states is an upper bound of the
number of reached states. Therefore, the differential dN=dt
approaches 0 as a bloom filter enlarges. This tendency can
be explained by the inhibition rate q as follows:

dN

dt
¼ rð1� qÞN:

Moreover, the increase in the number of reached states N is
considered to be more inhibited as N approaches the
number of reachable states M. From this observation, the
inhibition rate q needs to satisfy the conditions below:

1. q approaches 0 as t decreases,
2. q approaches 1 as t increases, and
3. q increases monotonically as N increases.

State coverage N=M, for instance, satisfies these condi-
tions on q because a verification run with a larger bloom
filter achieves better coverage in general.

However, since the number of hash functions varies the
behavior of the inhibition rate q, state coverage is not
adequate as q. Fig. 2 shows that reached states increase
quickly for larger k with the same coverage. This is because
a state can be reached when one of the hash values avoids a
collision. Therefore, even with the same coverage, q

decreases faster when k is larger. Let p be state coverage
N=M. Then, q ¼ pk satisfies the condition. We adopt
ðN=MÞk as the inhibition rate q.

3.1.3 Growth Curve

From the discussion above, the next differential equation is
considered to approximate the increase in reached states:

dN

dt
¼ r 1� N

M

� �k( )
N:

The equation models both the proportional increase by
using a small bloom filter and the saturation of the increase
by using a large bloom filter. The solution of the equation is

NðtÞ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ce�krtk
p ; ð4Þ

where C is an integral constant.
Fig. 4 shows the growth curves described by (4). N is

particularly a well-known logistic function when k ¼ 1.
When k > 1, the curve is not symmetric about the inflection
point, unlike when k ¼ 1.
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3.2 Estimation with Growth Curve

We propose two coverage estimation approaches with the
growth curve defined by (4). Our approaches leverage the
statistics from multiple verification runs with boom filters
of different sizes to compensate for the lack of information
reflecting the characteristics of models. The basic idea is to
estimate the number of reachable states in a model by
fitting the growth curve to the statistics of multiple runs.
We introduce two approaches: a curve fitting approach
and a simple formula approach.

The strategy of using the statistics from multiple
verification runs matches up precisely with swarm verifica-
tion techniques [10]. In swarm verification, to achieve high-
quality results with fast turnaround time, parallel verifica-
tion runs with relatively small bloom filters are performed
on many processing cores. Our approaches can estimate
coverage with these results from parallel verification runs.

3.2.1 Curve Fitting

A curve fitting technique can extrapolate the number of
reachable states. Equation (4) contains three unknown
parameters M, C, and r. If the formula accurately describes
the relation between t and N , these parameters, particularly
M, can be estimated by a curve fitting technique such as a
nonlinear least-squares method from the statistics of multi-
ple verification runs.

With the estimate ME of the number of all reachable
states, a coverage estimate Covfitting is calculated as

Covfitting ¼
N

ME
: ð5Þ

3.2.2 Simple Formula

The other approach is to use a simple formula derived from
(4) with some assumptions. With the simple formula, only
two verification runs are required for estimation.

Let FN be the fraction NðtÞ=Nðt� nÞ for a positive
number n. It is apparent that FN approaches 1.0 when
coverage approaches 100 percent since NðtÞ is asymptotic to
M. Thus, how close FN is to 1.0 can be utilized for coverage
estimation. From (4), coverage NðtÞ=M is estimated by the
following equation using FN :

Covsimple ¼
NðtÞ
M
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekrn � Fk

N

ekrn � 1

k

s
: ð6Þ

Therefore, if a growth rate r is known in advance, a couple
of runs suffice for estimation.

Let r be ln2 as discussed in Section 3.1.1 and Fm be the
abbreviation of ern. Fm is equal to the fraction of the sizes
of bloom filters 2n ¼ 2t=2t�n. Hence, with Fm, (6) is
rewritten as

Covsimple ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fk
m � Fk

N

Fk
m � 1

k

s
:

This implies that the formula estimates coverage from the
fraction of the sizes of bloom filters and the fraction of the
numbers of reached states in two verification runs.

When Fm < FN , an estimate cannot be computed because
the formula yields a negative or complex number. In such
cases, we can use another n for estimation until it yields a
positive number.

4 EXPERIMENTS

For evaluating our approaches, first we experimented to see
how well the growth curve defined by (4) approximates the
increase in reached states in practical models. Then, we
compared the estimation results from our approaches and
the conventional ones.

4.1 Evaluation of Growth Curve

To check the validity of the growth curve defined by (4), we
fitted it to the measured coverage of 12 model checking
graphs from http://fi.muni.cz/xpelanek/state_spaces/
[13]. States in three out of the 12 graphs are reduced by
partial order reduction. These reduced graphs have the
suffix .red in their names.

For a graph with 2i reachable states, we measured
reached states for 10 verification runs with bloom filters that
range in size from 2die�5 to 2dieþ4. Then, we fitted the growth
curve of (4) to the measured reached states by a nonlinear
least-squares method.

Fig. 5 shows the fitted curves (drawn by lines) and the
measured coverage of the graph brp.red. As can be seen,
the fitted curves closely approximate the measured points
(plotted by square, triangle, and x-mark, respectively, for
k ¼ 1; 2, and 3), regardless of the number of hash functions k.

For the other graphs, the fitted curves approximate the
measured coverage as well. Table 1 shows the estimated
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growth rate r and the coefficient of determination R2, which
is a measure of how well the fitted curve represents the data
for each graph. The estimated growth rate r fits into the
range from ln1:8 to ln2:3 for most graphs, that is, it is
approximately ln2 as predicted in Section 3.1.1. However, r
tends to decrease slightly as k increases. From the results in
which R2 was approximately 1.0 for all the graphs, the
growth curve of (4) closely approximates the increase in
reached states of bitstate hashing. This holds true for
practical models regardless of whether or not partial order
reduction is used. The growth curve could approximate the
measured data of the reduced graphs (brp.red, n-s-

original.red, and phil5.red).

4.2 Coverage Estimation

To evaluate our estimation, we compared the following
approaches:

. curve fitting approach (Covfitting, (5)),

. simple formula approach (Covsimple, (6)),

. Stern’s approach (CovStern, (1)) and

. Dillinger’s approach (CovDillinger, (2)).

We used the same graphs used in Section 4.1 and evaluated
errors in estimation results. For a graph with 2i reachable
states, we estimated coverage for 10 verification runs with
bloom filters that ranged in size from 2die�5 to 2dieþ4. In the
curve fitting approach, coverage of a verification run with a
bloom filter of 2l bits was estimated from results of six
verification runs with bloom filters that ranged in size from
2l�5 to 2l bits by a nonlinear least-squares method. When the
fitting failed, we tried another fitting with a fixed growth
rate (r ¼ ln2) as a fallback. When the second fitting failed, it
was treated as a missing value. In the simple formula
approach, we used a fixed growth rate (r ¼ ln2) and took 1
as n at the start. Then, we incremented n by 1 until the
formula yielded a positive number.

First, we take one of the graphs and give an overview of a
tendency of our approaches. Fig. 6 shows the estimation
results of the graph brp.red. The graph brp.red is one of
those whose coverage is not very accurately estimated by the
conventional approaches. Both of our approaches achieved
more accurate results than the others. Especially for single
bitstate hashing (k ¼ 1), our approaches yielded good results
even with a small bloom filter. Though our approaches are
better than the existing approaches regardless of k, coverage

estimates for k ¼ 2; 3 are not very accurate compared with
k ¼ 1. A similar tendency can be seen in the other graphs.

Next, we describe the distribution of residual errors in
coverage estimates. The distribution of residual errors for
single bitstate hashing (k ¼ 1) for each approach is plotted in
Fig. 7. The x-axis is the actual coverage, that is, the
proportion of reached states to reachable states. The y-axis
is the residual error in percentage point, that is, the absolute
value of the difference between an actual coverage and a
coverage estimate. Residual errors are basically lower in our
approaches than in the conventional approaches. There are
many points that have a residual error over 40 percentage
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TABLE 1
Results of Curve Fitting

Fig. 6. Coverage estimation of brp.red graph.



points in the conventional approaches. Meanwhile, our
approaches have quite a few such points. Table 2 sum-
marizes the distribution of Fig. 7. It compares residual errors
among intervals of actual coverage (Act. Cov.). For instance,
when the actual coverage was within 0 to 20 percent, the
third quartile (3Q) values of residual errors by the curve
fitting approach were lower than 12.70 percentage points.
When the actual coverage is under 40 percent, the 3Q value
of a residual error in our approaches is much lower than
those of the conventional approaches. On the other hand,
when the actual coverage is higher than 80 percent, no
significant difference is found from Table 2. Thus, for single
bitstate hashing, our approaches outperform the conven-
tional ones when a verification run covers a small portion of
a state space.

Finally, we study the difference among the numbers of
hash functions. The estimation results for k ¼ 1; 2; 3 are
summarized in Table 3. The column labeled “failed”
represents the number of failures (missing values) in
estimation. As seen in Table 3, our approaches are more
accurate than the others. Our approaches improve median
values and 3Q values by about 10 percentage points
regardless of k. However, the residual error tends to
increase as k increases. This is considered to be because
an increase in hash functions weakens the inhibition of

growth even if the actual coverages are the same. In our
approaches the inhibition rate q decreases as k increases in
accordance with its definition in Section 3.1.2. Thus, even if
the actual coverages are similar, an increasing rate of
reached states is larger than that for small k. This causes a
difficulty for estimation from the increasing rate of reached
states because estimation becomes more sensitive to its
variation. For instance, with the simple formula approach
with r ¼ ln 2 and n ¼ 1, an increase rate of FN ¼ 1:9
indicates coverage of 36.1 percent for k ¼ 2, while
it indicates coverage of 10.0 percent for k ¼ 1. Since FN ¼
2:0 indicates coverage of 0.0 percent, a slight increase in FN
greatly affects an estimate for large k. Therefore, estimation
errors enlarge as k increases. Thus, using one hash function
is recommended to estimate coverage of bitstate hashing.
Once a coverage estimate is obtained, an estimate of the
number of reachable states M can also be obtained.
Therefore, a coverage estimate with high accuracy can be
calculated from the estimated M and the number of reached
states with k larger than 1.

When our two approaches are compared, the simple
formula approach has more advantages. In contrast to the
simple formula approach yielding estimates for all the cases,
29 out of 360 trials failed in the curve fitting approach. In
Table 3, the median and 3Q values of the curve fitting
approach are only a few percentage points better than those
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Comparison among Approaches for Each Interval of Actual Coverage (k = 1)



of the simple formula approach. Though the curve fitting

approach uses four more verification results than the other,
our two approaches do not significantly differ. This is

mainly because our approaches strongly depend on how

much the growth is inhibited. The closer the number of

reached states approaches is to the number of reachable
states, the more gently reached states increases. In a sense,

our approaches extrapolate the end of the growth from this

observation. Thus, a few verification results that are close to

the end of the growth have a conclusive impact. From the
viewpoints of the number of verification runs and the risk of

estimation failures, the simple formula approach has

advantages over the curve fitting approach.

5 DISCUSSION

Whether our approaches are applicable depends on the

graph structure of models. Let V be a set of reachable states

in a state space and fVS; VI ; VDg be a partition of V such that

VS contains an initial state, there are no direct transitions
from VS to VD and a state in VD (VI) is reachable from a state

in VI (VS) via no states in VS (VD) as shown in Fig. 8. If the

probability reaching VD from VS is very low for some

partition, a search is highly probable to finish without
visiting all states in VD. In bitstate hashing, the difficulty

reaching VD from VS is dependent on the graph structure of

VI . When states in VI have an appropriate amount of

branches leading to VD, a search can approach VD by
tracking another branch even if hash values collide at a

branch. On the other hand, if very few branches lead to VD,

it is exceedingly difficult to reach VD. Especially, if VI is a

straight line structure, a single collision makes it impossible
to reach VD. Moreover, the shorter the interval between

hash collisions, the more difficult it is to go through VI .

An interval between hash collisions is very short for
single bitstate hashing. Assuming that a proportion of on-
bits in a bloom filter is p, the expectation of the number of
states that can be visited before the next collision (unin-
terrupted transitions) is approximated by 1

pk
� 1. One can

observe that the expectation is very small for single bitstate
hashing (k ¼ 1). Only nine states, for instance, are expected
to be visited before the next collision when 10 percent of bits
are set to 1. One may think that the expectation value is
sufficiently large since a search starts with an empty bloom
filter. However, this is not the case. The expectation of
uninterrupted transitions E before the first collision for
single bitstate hashing is calculated by the equation below:

E ¼
Xm
i¼1

i
mi

mi

i

m
¼
Xm
i¼1

mi

mi
;

where mi is the ith falling factorial of m. When a state and
its hash value are regarded as a person and his/her
birthday, E þ 1 is equivalent to the average number of
people required to find a pair with the same birthday in the
birthday problem. E is identical to Ramanujan’s Q-function
and has asymptotic expansion [17]:

E ¼
ffiffiffiffiffiffiffi
�m

2

r
� 1

3
þ 1

12

ffiffiffiffiffiffiffi
�

2m

r
þOðm�1Þ:

This implies that an interval between hash collisions for
single bitstate hashing is short even at an early stage of
exploration.

Thus, in a state space with a long straight line-like
structure, frequent hash collisions increase the risk of a
search terminating without visiting a large part of states
even if a bloom filter has plenty of room. When a large
part of states is omitted because of the graph structure,
coverage estimation methods leveraging the number of
visited states and the size of a bloom filter results in a
high coverage estimate near 100 percent. The expected
value of uninterrupted transitions for k ¼ 1 takes a smaller
value than for larger k at an early stage of exploration.
This indicates that coverage estimation for single bitstate
hashing is notably sensitive to a long straight line-like
structure. However, the expected value of uninterrupted
transitions ( 1

pk
� 1) can be improved by using multiple

hash functions. This improvement generates a gap in
which an estimation with a single hash function results in
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TABLE 3
Summary of Residual Error of Coverage

Fig. 8. Partition of state space.



nearly 100 percent coverage and a search with multiple
hash functions visits more states that are distinct in spite
of using a bloom filter of the same size. By observing this
gap, significant errors stemming from the graph structure
can be detected.

Furthermore, the applicability of our approaches is
strengthened by a characteristic of practical models. In the
case of practical models, the height of the shortest path tree
from an initial state is considerably smaller than the number
of reachable states. In fact, the typical height of a shortest
path tree is OðlogMÞ for the number of reachable states M
[18] (http://anna.fi.muni.cz/models/). This feature is
supported by the fact that practical models rarely have a
long straight line structure because model checking aims at
verifying systems with nondeterministic transitions, which
are described as branches in a state space. Therefore, our
approaches are considered applicable for practical models.

6 CONCLUSION

We have proposed coverage estimation methods for model
checking by bitstate hashing. We have analyzed an increase
in reached states by enlarging a bloom filter and have
introduced a growth curve that approximates it. Our
approaches estimate coverage on the basis of the proposed
growth curve. The existing approaches are not accurate
enough for a verification run with low actual coverage due
to the lack of information. They use only the number of
reached states and the size of a bloom filter from a single
verification run. On the other hand, our approaches estimate
coverage by fitting the growth curve to the statistics from
multiple verification runs to compensate for the lack of
information that reflects the characteristics of state spaces.

We have experimented on the validity of the growth
curve and have verified the applicability of our approaches
to practical models. The experimental results have con-
firmed that the proposed growth curve accurately describes
the increase in reached states in verification of practical
models. Moreover, our approaches outperformed the
conventional ones when a verification run covered a small
portion of state space. The results have shown that the
estimation errors were reduced by about 10 percentage
points on average and have confirmed the effectiveness of
our approaches regardless of the number of hash functions.
Therefore, our approaches are applicable for coverage
estimation for practical models. In addition, our approaches
can be used as barometers for sequential or parallel
verification techniques such as [6], [11], [19], [10], in which
coverage of a single verification run is very important.

Note that while our approaches are applicable regardless
of the number of hash functions, it is better to use one hash
function for coverage estimation. With multiple hash
functions, estimation becomes very sensitive to the variation
in the increasing rate of reachable states. Therefore, it is
difficult to achieve high accuracy for bitstate hashing with
multiple hash functions.

Future work will be to confirm the effectiveness of our
approaches for variations of bitstate hashing. For instance,
the method introduced by Holzmann [6] probabilistically
stores a newly visited state into a bloom filter. In such
variations, since additional parameters might be required

for coverage estimation, the effectiveness and applicability
of our approaches are worth a discussion. Hence, we want to
adapt our approaches to such variations of bitstate hashing.
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Walk State Space Exploration,” Proc. 10th Int’l Workshop Formal
Methods for Industrial Critical Systems, pp. 98-105, 2005.

[14] R. Grosu and S.A. Smolka, “Monte Carlo Model Checking,” Tools
and Algorithms for Construction and Analysis of Systems, vol. 3440,
pp. 271-286, 2005.

[15] E. Tronci, G.D. Penna, B. Intrigila, and M.V. Zilli, “A Probabilistic
Approach to Automatic Verification of Concurrent Systems,” Proc.
Asia-Pacific Software Eng. Conf., pp. 317-324, 2001.

[16] T. Menzies, D. Owen, and B. Cukic, “Saturation Effects in Testing
of Formal Models,” Proc. 13th Int’l Symp. Software Reliability Eng.,
pp. 15-26, 2002.

[17] P. Flajolet, P.J. Grabner, P. Kirschenhofer, and H. Prodinger, “On
Ramanujan’s Q-Function,” J. Computational and Applied Math.,
vol. 58, no. 1, pp. 103-116, 1995.
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