
Incorporating “Level Of Detail” into Programming Languages

Aimed at Real-Time Application

Takahito Tejima and Yasushi Kuno ☆☆

Interactive computer graphics, including video games, are now popular and widely adopted
computer usage. However, detailed scene generation consumes lots of CPU power and thus
might prohibit timely update of graphics views. To address the problem, some programs
uses “Level Of Details” (LODs) to control the conciseness of scene being generated; use lager
LODs when there is enough CPU power (spare processing time), and use smaller LODs when
not. Currently such programs are written in traditional programming languages, and LOD
mechanisms are hand-crafted by the programmes, which is tedious and error-prone. In this
paper, we propose alternative method in which LODs are directly supported by programming
language core. With our approach, execution of alternative code corresponding to several
levels of LODs are automatically controlled and selected by the language runtime, leading to
more readable and maintainable code. We have implemented a experimental language based
on our proposal. Also we present several examples written with the language.

1. Introduction

Real-time processing is a processing method that is
widely used in interactive graphics applications such
as in video games and visualization simulation as well
as in built-in systems such as computer controls and
communication devices.

Generally, processing accuracy and interactivity
are in a trade-off relation. In video games and vi-
sualization simulation, a widely used method is to
prepare data regarding the objects that are to be
displayed at multiple detail levels, and choose the
data of appropriate level considering the trade-offs
noted above. This method is known as level of detail
or LOD for short2)3) (Figure 1).

69451 6946 695 234
(the number of polygons)

Fig. 1 Shape-LOD examples

For example, objects viewed in the distance do not
need detailed shapes since they are displayed in a
small size on the screen. In this case, utilizing a
shape with a low detail level (rough shape) can in-
crease throughput.

This can also be applied not only to the display of
contents, but also to the processing of behaviors and

☆ Graduate School of Systems Management, The University
of Tsukuba, Tokyo

actions. As an example, when stadium spectators
are to be drawn, choices as shown in Table 1. are
possible.

Similarly, when displaying walking people, the
choices as shown in Table 2. are possible.

In real-time graphics applications, the task is cyclic
as shown below:
loop {
1. advance current-time by small amount.
2. generate scene according to the

current time.
}

To generate a scene, controlling (1) states of the
each objects to be displayed, (2) LODs for each of
those objects, and (3) set of the objects currently
visible on the screen are necessary. As conventional
programming languages do not support above con-
trols directly, we have to code them manually, as in
the following outline.
loop {
advance current-time by small amount
for each object o within the scene{
if(o is visible on the screen){
if(state of o is X){
if(LOD for o is high){
/* high resolution drawing of o

in state X */
}else if(LOD for o is moderate){
/* middle resolution drawing of

o in state X */
...

}
}else if(state of o is Y){
if(LOD for o is high){
...
...

}
}

}
}

}

Table 1 LOD example in spectator behavior

Accuracy High Medium Low
Cost High Medium Low

Processing examples Simulate gaze conditions
and corresponding body
movement per individual

Complete control of behav-
iors corresponding to out-
side events per group

Play predetermined anima-
tions in all spectator seats.

Table 2 LOD example of walking people

Accuracy High Medium Low
Cost High Medium Low

Processing examples Dynamically determine each
hand and foot movement
while calculating gravity,
inertia, and contact with
the ground

Play walking animations
prepared for the hand and
foot bone structure in ad-
vance

Display a shape with a
right foot forward and that
with a left foot forward by
linear interpolation

Such coding is tedious, hard to read and error-
prone. To overcome the problem, this paper proposes
an object oriented language that supports automatic
choice among alternative codes according to the re-
quired level of details.

First, we will describe the outline of time restric-
tion in graphics applications and LOD processing of
data from previous studies. We also explain the ne-
cessity for process dependent processing according
to detail level. Then, real-time languages in previ-
ous studies will be examined. Finally, a program-
ming language framework which enables description
of multiple codes corresponding to multiple LODs
and automatic choice among them will be discussed.

2. Time Restriction and LOD Processing

Interactive graphics applications are categorized as
either variable frame rate systems or fixed frame rate
systems, depending on the way they handle the tim-
ing constraints of updating images2).

In a variable frame rate system, a drawing process
is performed in a time proportional to the number or
complexity of objects to be drawn. However in most
cases, since the complexity of the objects to be drawn
differs drastically depending on the situation such as

the state of each object or viewpoint coordinate. The
problem of variable frame rate system is that a stable
real-time characteristic cannot be obtained4).

Conversely, in a fixed frame rate system, the
drawing process on the screen is performed in syn-
chronous to the refresh rate of the output equip-
ment. For example, since the output equipment in
non-portable household game machines is generally
the TV monitor, the drawing process is performed
as a cyclic task conforming to video signal specifi-
cations such as NTSC (60 cycles/second) and PAL
(50 cycles/second). Because interactive applications
require not only drawing processing but also other
processing such as game-model simulation according
to the user input, scenario progress, and sound pro-
cessing, CPU time that can be used for the drawing
processing is much more restricted.

In both variable and fixed frame-rate systems, a
LOD processing based on hierarchical scene graph,
which include multiple LOD choices, combined with
simple priority scheme has been used for a long
time3). Figure 2 shows timing change and real-time
characteristic improvement with application of LOD.
The time required for the drawing models A, B, and
C per frame is shown in the upper half of Frame

1. Drawing all of A, B, and C as is will exceed the
deadline and prevent update of drawing contents in
the next frame. Here, when B’s importance is low, by
switching simpler model B’ instead of B on the screen
can reduce the total cost, allowing a new drawing
process in the next frame as shown in the lower half
of the diagram. On the other hand, when the impor-
tance of B is high, switching to models A’ and C’ for
A and C can adjust the load as shown in the lower
half of Frame 3.

Many studies have been conducted regarding
methods to simplify geometrical data2). Method to
decide which detail level should be used at imple-
mentation greatly differs between variable and fixed
frame-rate systems.

Detail levels are selected through individual pro-
cessing data in variable frame-rate systems, while
in fixed frame-rate systems, they are selected by a
scheduler considering the total throughput and time
restriction. Of course, fixed frame-rate systems have
more of real-time characteristics.

Thus, adaptive detail level processing of graphical
data has been widely applied.

On the other hand, recent improvements in hard-
ware performance has led not only to the larger vol-
ume of graphical data, but also to the more com-
plex processing methods. Physical simulation is used
for describing object behaviors in real-time graphics
applications as well, and for crowd expression, pro-
cesses responding to a variety of events in the scene
can be used in a program6). LOD processing can sim-
ilarly be applied to such behavior describing, and us-
ing omitted behavior processing for objects with low
importance on the screen when they are viewed in
the distance can reduce the total throughput. How-
ever, the problem lies in that in most cases, a detail
level switching process must be described in conjunc-
tion with the behavior process, and current lack of
descriptive power in the conventional programming
language makes it difficult to completely ensure time
restriction.

3. Language Support for Real-Time Pro-
cessing

Scheduling systems for real-time processing have
been widely studied. For example, RTC++5) is an
extension of C++ language with the following fea-
tures:
• a real-time object which is an active entity
• creation of an active entity on a remote host
• timing constraints in an operation as well as in

statements
• a periodic task with rigid timing constraints

This language supports explicit timing constraints,
highly preemptable object, periodic task creation,
and priority inheritance.

Such a framework is also applicable to a real-time
visualization applications which have specific charac-
teristics that are not found in standard built-in sys-
tems. The point is that when performing processes
cannot meet the time restriction, an alternative pro-
cessing using lower quality is used. This is a very
important characteristic in real-time processing, but
general-purpose programming languages do not sup-
port automatic selection among alternative process-
ing methods, thus programmers have to code such
selection manually. Some software environments1)

can perform such selection, but they must use scene
graph structures specific to the libraries and are not
suitable when behavior processing also have to be
selected according to the display selection.

4. Level of Detail Processing System

4.1 Language Design
We have explored mechanisms and specifications

for such a language, which will be described below.
We have also constructed experimental implementa-
tion for the language, and have evaluated usefulness
of such language based on writing several example
code.

For easy integration to current applications, the
language was designed as minor expansions to C++,
in which methods and statements have some extra
functionality for LOD processing. Therefore, the
grammar of the language mostly resembles that of
C++. The implementation also outputs C++ code,
which is compiled with ordinary C++ compilers.

4.1.1 LOD method definition
The following is class A declaration with method

f(), which is exactly equivalent to C++ declaration.
/* -- Declaration -- */
class A {
public:
void f();

};

However in our language, method f() may have
multiple implementations, each of which is appro-
priate for the some specific range of LODs. In our
design, LODs are controlled by a small integer called
“cost”. The cost value is interpreted as the process-
ing time required to run the method. Each imple-
mentation of f is accompanied by a cost value as in
the form f{cost}(· · ·). Any number of f() can be

Frame 1 Frame 2 Frame 3

A B A B

Frame display interval

A B C CC AA B B

without

LOD

with LOD

CC

Fig. 2 Changing Real-Time Characteristics With or Without LOD Processing

defined, provided that their cost value all differ each
other.
/* -- Implementation 1 -- */
A::f{100}()
{
<Highly accurate processing that requires
cost>

}
/* -- Implementation 2 -- */
A::f{50}()
{
<Coarse processing available at half the
cost>

}

Now class A has a method f() with two LOD
implementation. An appropriate implementation is
chosen according to the context by calling simply
method f().

On the user side of this class object, LOD method
is invoked from within a schedule block which spec-
ifies limit cost at the entry, in the following form:
schedule(limit){
code to be executed
}

With such mechanism, we can easily select a pro-
cess dynamically, just like as in the polymorphic
method selection of object-oriented languages. For
example, we can use methods of class A as follows:
/* -- Using objects -- */
{
A a, b;
schedule(200){
a.f();
b.f();
/* the method with cost 100 is chosen

for a and b */
}
schedule(100){
a.f();
b.f();
/* the method with cost 50 is chosen

for a and b */
}

}

4.1.2 Object priority
In the above example, if the specified cost limit is

150, following two LOD combinations are possible:
• invoke a.f{100}() and b.f{50}()

• invoke a.f{50}() and b.f{100}()

In general, there will be many combinations that
satisfy specified time limit. Like the shape LOD, we
can have much better results with assigning higher
cost to more important object.

There are many kind of importance criterion such
as size of the corresponding object on the screen,
or its speed of movement, or likewise. Exact priority
assignment depends on application. We thought that
single integer value for priority will be sufficient and
reasonable. So the class with LOD method always
has the instance variable priority, and the system
will select among combinations of methods based on
that value.

Here is code example that execute a.f(), b.f()
and c.g() with total cost limit 200.
{
A a, b;
C c;

a.priority = 5;
b.priority = 3;
c.priority = 2;

schedule(200){
a.f();
b.f();
c.g();

}
}

In this case, a.f() can choose the highest cost
implementation because priorities are a > b > c.

Above is the basic outline of this language. Which
implementation of LOD methods is actually used is
determined dynamically. When we assign cost value
proportional to processing time of each LOD method
and choose appropriate limit values on schedule
statements, scheduling for fixed frame-rate systems
will be realized.

In the current design, no flow controls such as loop
within a schedule block are allowed. However an
nesting of schedule block is possible as in follows:
{
schedule(200){
a.f();
b.f();

Table 3 State variables of moving vehicle

LOD State variables
Low Position
Mid Position, Orientation, Velocity,

Acceleration
High Engine Rotational Speed, Tire Load,

Transmission State, Steering Angle ...

schedule(150){
c.g();
d.g();

}
}

}

In this case, a.f() and b.f() are executed with
cost limit 50 because the cost to execute inside sched-
ule block is guarantied at 150.

4.1.3 LOD Transition
In an actual application, different set of state vari-

ables are used for different LOD. For example, To
describe moving vehicle needs various variables ac-
cording to LOD (Table 3) .

When LOD changes, some variables for new
LOD implementation should be initialized appropri-
ately to maintain continuity. To avoid complicated
branching in LOD method, the system records previ-
ous LOD selection and automatically invokes “tran-
sition methods” if necessary.

In the previous example, we can define a transition
method as in the following:
/* -- LOD High -> Low Transition */
A::f{100->50}()
{
<initialize variables of f{50}
from variables of f{100}>

}

Similarly, reverse transition method can be de-
fined:
/* -- LOD Low -> High Transition */
A::f{50->100}()
{
<initialize variables of f{100}
from variables of f{50}>

}

If transition method is defined for a transition,
the method is automatically invoked before the main
method for the new LOD. This mechanism resem-
bles method combination feature seen in some of the
object-oriented languages.

As a summary, in the proposed language, declara-
tive description of multiple LOD code and transition
code among them is possible, and runtime system
automatically selects appropriate set of code and ex-
ecutes them.

4.2 LOD Selection
There are three factors in LOD selection:

(1) Method cost

statically specified in the source code.
(2) Cost limit

dynamically specified upon each entry of
schedule blocks.

(3) Priority
associated to each object; can be changed
dynamically through assignment to priority

value.
The runtime system have to select appropriate

LOD for each method invocation in schedule block.
This is combinatorial optimization problem and it is
difficult to have an optimal solution. So we took an
approximate algorithm as follows:
(1) Proportionally distribute the cost limit to each

invocation with their priority
(2) Select the highest cost implementation within

the distributed limit
(3) Improve selection from higher priority object

with surplus cost budget
(4) Repeat step 3 until there are no more higher

cost selection within cost limit
Since LOD methods can be sorted by their costs

at the compilation time, step 2 takes O(n) time to
solve. Step 3 requires O(n log n) time in order to
sort by priority.

5. Evaluation

5.1 Evaluation Criteria
We now shows the results of using our language

in two example scenes. With these examples, we
evaluate this language from the aspect of the easiness
of description and the adequacy of LOD selection.

5.2 Sample 1: Eight Sphere
The first sample contains moving eight spheres in

the grid plane. Each sphere is initially located at a
random position and is moving along given direction
at a constant speed. When they achieve an edge of
the grid, they bound off the wall and keep moving in
the grid. User can move the view point arbitrarily.

Figure 3 shows a screen shot A at some point of
this application. There is a bar chart at the upper
side and it shows cost counting of each sphere. In
this situation, the cost limit is set to 100. There are
three LOD of drawing sphere method and their costs
are 30, 13, and 5.

The brown sphere is nearest to the eye point and it
is drawn with the biggest shape in the screen. In this
application, the priority used in LOD selection is set
in proportion as the distance between the sphere and
the eye point. Therefore the nearest brown sphere
can have the highest LOD selection. The brown

sphere is drawn with the highest LOD of cost 30
in screen A. The next red sphere is also drawn with
the LOD of cost 30, and the next yellow sphere is
drawn with the LOD of cost 13.

The upper row of Table 4 shows the LOD selection
result in screen A. Total costs of inside schedule block
invocations are 98 and it satisfy the limit of 100.

Figure 4 shows a screen shot B at another point of
this application with different sphere positions and
different eye point. The lower row of Table 4 shows
the LOD selection result in screen B.

Fig. 3 Scene 1, Screen A

Fig. 4 Scene 1, Screen B

Like screen A, the cost total fits the given limit. In
this case, the purple sphere is drawn with the highest
LOD instead of the brown sphere because the brown
sphere is far from the eye point and it doesn’t require
such a high detail at the moment. In this way, we
have confirmed that the LOD selection should work
depending on the priority. This example shows we
can select LOD without complicated description in
our language.

Fig. 5 Scene 2

5.3 Sample 2: Walking Person
Next we have examined how transition methods

can be useful. In this scene, there is a human with
walking animation (Figure 5)

The class which represent the human have two
LOD selection (High and Low) to describe walking
animation. Higher detail implementation Walk{100}

consists a lot of parameter set such as foot position or
knee angles or arm swing angle, etc. Lower detail im-
plementation Walk{50} simply interpolate between
two states – step left foot and step right foot – and
it has only one parameter. These state variables are
independent between Walk{100} and Walk{50}. In
such case if the selected LOD is different from previ-
ous cycle, an noticeable flicker like a “flipping foot”
can occur by the state discontinuity.

To address this problem, we have to initialize some
state variables which will be used after a certain in-
terval from other state variables which are used at
previous cycle.

In our language, we can treat this problem simply
writing transition methods as follows:
class Human
{
public:
void Walk{50->100}()
{

/* initialize parameters for High
from parameters for Low */

}
void Walk{100->50}()
{

/* initialize parameters for Low
from parameters for High */

}
}

Table 5 shows cyclic method invocation with these
transition methods. You can see appropriate initial-
ization methods are called when LOD transition will
occur.

Table 4 LOD selection in screen A, B

Sphere Red Green Blue Yellow Purple Cyan Black Brown Total Limit
LOD in screen A 30 5 5 13 5 5 5 30 98 100
LOD in screen B 30 5 5 5 30 13 5 5 98 100

Table 5 method invocations with LOD transition

Cycle LOD Invoke Method
1 High Walk{100}
2 High Walk{100}
3 Low Walk{100→50}

Walk{50}
4 Low Walk{50}
5 Low Walk{50}
6 High Walk{50→100}

Walk{100}
7 High Walk{100}

As a summary, we can have smooth LOD switch-
ing by just adding some initialization as a transition
method instead of complicated conditional branches.

6. Conclusion

In this paper, we proposed programming language
which support automatic LOD selection and transi-
tion. In contrast to manually programming of com-
plex LOD branching, specialized language make it
easier to separate LOD controls from other process-
ing such as state controls. We have described basic
design and implementation of such language.

References

1) OpenGL Performer getting started guide. Technical
Report 007-3560-002, Silicon Graphics, Inc., 2000.

2) DavidLuebke etal. Level of detail for 3D Graphics.
Morgan Kaufmann, San Francisco, 2003.

3) ClarkJ. H. Hierarchical geometric models for visible
surface algorithms. Communications of the ACM,
19(10):547–554, 1976.

4) RHawkes. Update rates and fidelity in virtual envi-
ronments. Virtual Reality: Research, Development,
and Application, 1(2):99–108, 1995.

5) Yutaka Ishikawa, Hideyuki Tokuda, and CliffordW.
Mercer. An object-oriented real-time programming
language. Computer, 25(10):66–73, 1992.

6) DanielThalmann Soraia RauppMusse. Hierarchi-
cal model for real time simulation of virtual human
crowds. IEEE Transactions on Visualization and
Computer Graphics, 07(2):152–164, 2001.

