
January 18, 2006 1

Mogemoge : A Programming Language

Based on Join Tokens

Taketoshi Nishimori, Yasushi Kuno

Graduate School of Systems Management, University of Tsukuba, Japan

nis@kjps.net, kuno@gssm.otsuka.tsukuba.ac.jp

In the video game software industry, scripting languages have been uti-
lized to alleviate the complexity of game development. Those languages
help game designers to write and modify game design quickly. However,
current scripting languages do not have sufficient expressive power to de-
scribe interactions among game characters in a concise manner. This lack
of expressive power makes it difficult to write and maintenance complete
game rules. To overcome the problem, we are designing and developing
a scripting language “Mogemoge”. Mogemoge incorporates “join tokens”
as primary mechanism for interaction of game characters. Join tokens are
based on join calculus, with process on the original calculus substituted by
tokens. In this paper, we explain language design of Mogemoge, along with
its join tokens mechanism. We also discuss effectiveness of the language for
game rule description.

1 Introduction

Recently, many software tools for video game de-
velopment have become available. Those include
game engines and development environments [8, 1, 2],
which are used for development of free and commer-
cial video games on PCs and set-top boxes (as in
XBOX or PlayStation).

Scripting languages [13, 3, 5, 10] are among such
tools. Scripting languages are viable alternative to
traditional (low-level) programming language such as
C or C++, and can provide safety and ease of writ-
ing. With those languages, non programmers (ex.
game designers) can construct higher level part of
game implementations such as character actions, AI
controlling. As they enables game designers to im-
plement higher level part of games without program-
mer’s help, it has become easy to repeat trial-and-
errors. More trial-and-errors makes the game more
enjoyable[11].

However, most of game scripting languages are not
designed for expressing complete game rules. Espe-
cially, handling of “active” objects (aka “game char-
acters”) and complex rules of their relationship are
tend to be scattered among the code, leading to dif-
ficult code to write, understand and debug for non
programmers.

We think that the above situation comes from the
following causes:

• Game design still lacks formalization and well-
known structures[11]. Consequently, program-
ming language support for game design task is
yet to be studied also.

• Concurrent programming research in general has
long history, but communication models of those
languages are not well suited for game descrip-
tion which needs lots of active characters inter-
acting each other.

January 18, 2006 2

To overcome the problems, we need a language that
naturally support game designers’ vocabulary, with
appropriate support for the description of character
activities and their interactions.

The authors have previously developed a game-
oriented scripting language[9] with tuple space com-
munication model[4], and accumulated some experi-
ences with real game development. From those expe-
riences, it seems that tuple space is basically good,
but still a bit low-level. Thus we looked for higher
level communication model.

Join calculus[6] is one of such a model, in which
simple string (pattern) matching in tuple space is
substituted by more formal and structured join oper-
ation.

However, in join calculus, subject of join operations
are active processes. This seemed too heavy-weighted
for programming targeted to game activities. There-
fore, we suggest “join tokens”, in which processes in
join calculus is substituted by passive tokens which
automatically invoke associated activities.

In this paper, we propose a scripting language
“Mogemoge”, which incorporates join tokens mech-
anism and is targeted to game rule description.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly explain the programming language
Mogemoge. In section 3, we introduce join tokens in
Mogemoge. In section 4, we present a sample game
program and its applicability to description of com-
plicated game rules. Finally in section 5, conclusions
and future development plans are presented.

2 Design of Mogemoge Lan-
guage

Mogemoge is a prototype-based, object-oriented lan-
guage like Self[12] and Dolittle[7]. The following code
creates a bank account object.

Account = object {

v = 0;

deposit = method(n) { v = v + n; };

withdraw = method(n) {

v = v - n;

if (v < 0) { v = 0; }

};

get = method() { result v; };

};

Mogemoge does not have “class” structure; the above
code creates an ordinary object and assigns it to the
global variable named “Account.”

To create individual account object, one can use
“new” operator as in the following:

a = new Account;

The “new” operator creates a fresh object and then
copies all properties (variables and method values)
from Account object.

To invoke methods on a object, dot notation as in
Java or C++ is used:

a.deposit(100);
a.withdraw(50);
print "outstanding : " + a.get();

print is a special operation which outputs string
value to standard output.

Mogemoge has four types of values:

Numeric: Represents numeric values. Numeric op-
erators (ex. +, -, *, /) can be used for those
values.

String: Represents sequence of characters. Any
value can be concatenated with a string with +
operator, resulting in appropriate string repre-
sentation.

Object: An objects is a set of variables (property
names and corresponding values). An object can
be generated by an object literal (as in Account
above) or a new operator.

Method: Methods are special object that can be ex-
ecuted by the script engine.

January 18, 2006 3

Account looks like a class, but it is simply a vari-
able which holds an object. The new operator takes
an object as the argument, whose copy is created and
returned.

Similarly, deposit, withdraw and get looks like
a method, but it is simply a variable which holds
an method value. The method operator creates a
method value.

An assignment stores a value to specified variable.
When the specified variable does not exist, it is newly
created. A ’my’ modifier forces to create a local vari-
able for a surrounding scope as in Perl. In the fol-
lowing, within foo, a is 1 and b is 2 but outside of
the foo, a is 5 and b is 3.

a = 5; b = 3;

foo = method() {

my a = 1; my b = 2;

result method() {

print "a = " + a;

print "b = " + b;

};

};

Note that foo returns an anonymous method ob-
ject, using a result statement. The method can be
used as in the following:

m = foo(); m();

Mogemoge also has the following features, which will
be described in other papers.

• C# like delegator

• Composition (composing objects and create a new
object)

• Injection (modifying an object by adding variables)

• Extraction (modifying an object by deleting vari-
ables)

In the following sections, we concentrate on join token
mechanism of Mogemoge.

3 Join Tokens

Most of video game programs have a main loop which
constitute the following phases:

• Update all characters

• Handle events caused in the updating phase

In the first phase, statuses of each characters are up-
dated, representing the advance of current time by a small
amount. Some events (ex. the collision between charac-
ters) may occur in the updating phase. In the second
phase, those events are handled. Game rules describe
complex inter-object relationships as to how those events
are generated and how they should be handled.

Event handling strongly depends on character types
and statuses. For example, if there are two characters
which are colliding in a shooting game, following cases
are possible:

• If one is an enemy’s shot and another is a player,
the shot will damage the player and the shot will be
destroyed. But if the player is unbeatable, the shot
will not be able to damage the player.

• If both are shots, they will destroy each other.

• If neither of two characters are shots, they should
not overlap each other.

Programming languages suitable for game program-
ming should support appropriate communication model
which can naturally express relationships as in the above
example.

Join tokens is such a communication model, which
comes from join calculus[6] and tuple space[4]. Figure
1 depicts how communications using join tokens occur.

Figure 1: Join Tokens

In our model, a token is a name accompanied by a series
of values (arguments). Objects can throw a token with

January 18, 2006 4

a name and several arguments into a place called “token
pool.” Handlers are special kind of code fragment that
can handle tokens. Every handler has a header, which
contains several token names and corresponding formal
arguments.

When the special “ignition” operation is executed, the
handler whose header matches tokens in the pool “fire”
and execute their body part. Matched tokens are removed
from the pool.

The following code throws three tokens and an ignition
operation invokes a handler with two tokens of them.

join r1.tok1(a, b) r2.tok2(c, d) {

print "a + c = " + (a + c);

print "b + d = " + (b + d);

};

throw tok1(1, 2);

throw tok2(30, 40);

throw tok3("hello");

ignition;

The throw statement throws a token into the token
pool. In the above example, the first throw statement
throws a token named tok1 into the token pool with
arguments (1,2). Similarly, the second throw state-
ment throws tok2(30, 40) and the third throw state-
ment throws tok3("hello").

An ignition statement starts matching and invoking
handlers. All handlers are matched by all tokens and
matched handlers are invoked. In the above code, the
handler is matched by tok1(1, 2) and tok2(30, 40),
and it is invoked with those tokens.

The join statement defines a handler which will be in-
voked when tok1 and tok2 tokens are both in the token
pool. The term r1.tok1(a, b) means that it matches
tok1 token which has two arguments. Invoking that han-
dler, a and b are assigned a value of corresponding argu-
ments of a matched token. r1 is assigned an object which
have thrown the matched token.

tok1 and tok2 tokens are used as arguments of the in-
voked handler and removed from the token pool. Unused
token tok3("hello") is left in the token pool.

Join handlers may be guarded by Boolean expressions
introduced by where. In the following example, the han-
dler is invoked only when the arguments of two tokens
are identical.

join r1.tok1(a) r2.tok2(b)

where a == b { ... };

Instead of removing matched tokens, it is possible to
leave them in the token pool introduced by a symbol “*”.

join r1.tok1(a) *r2.tok2(b) { ... }

Note that tokens left in the pool can match another
handler, or remain in the pool until next ignition.

In contrast to throw statement, dispose statement re-
moves a token from the token pool. The following removes
tok1 thrown by an object which executes this dispose

statement.

dispose tok1;

Tokens are identified by its name and originating ob-
ject. If an object throws tokens with the same name mul-
tiple times, the one thrown most recently remains in the
pool; previous ones are overwritten.

As an example in the following, tok(1) is overwritten
by tok(2) because the thrower of tok(1) is identical to
the thrower of tok(2).

A = object {

m = method() {

throw tok(1);

throw tok(2); # overwrites tok(1)

};

};

A.m();

In the following, tok(1) is not overwritten by tok(2)

because the thrower of tok(1) is different from the
thrower of tok(2).

A = object {

m = method() { throw tok(1); };

};

B = object {

m = method() { throw tok(2); };

};

A.m(); B.m();

With overwriting mechanism, tokens in the pool act as
a kind of storage cells (aka variables), and can be used
to record statuses of game characters. We explain this in
the next section.

To confirm existence of a token, An exist operator can
be used. The following code confirms the existence of tok
token whose thrower is the object executing the code.

if (exist tok) { ... }

When the status of a character is represented by a set
of tokens, exist operator is useful for examining statuses
of the characters.

January 18, 2006 5

4 An Example

To evaluate Mogemoge and join tokens, we made a sample
game application (Figure 2).

Figure 2: A Screen Shot of the Example Game

The game is a shooting game in which ships (arrow-
head shapes) try to beat each other. Ships can shoot mis-
siles (short line segments) to damage others. The player
can control his ship with a keyboard. Enemies are con-
trolled by the program. Player’s purpose in the game is
to destroy all enemies.

Followings are summary of game rules.

R1. Ships are controlled by a player or a program.

R2. Ships must not overlap each other.

R3. A ship can shoot missiles to damage other ships.

R4. By getting a power food, a ship becomes “unbeat-
able” for a while.

R5. An unbeatable ship can damage other ships by col-
liding against them.

R6. An unbeatable ship can destroy missiles.

R7. Ships getting a certain amount of damage are de-
stroyed.

R8. When a ship accumulates a certain amount of dam-
ages, it is destroyed.

These rules are classified into two categories — rules
that specify relationships between game characters (R2,
R3, R4, R5, R6) and other rules (R1, R7, R8).
Non-relationship rules (R1, R7, R8) can naturally be
implemented as ordinary method associated with corre-
sponding objects. However, with ordinary methods, re-
lationship rules (R2, R3, R4, R5, R6) require com-
plicated coding because two or more objects participate
them. Here, our join tokens mechanism comes in.

Figure 3 shows skeleton implementation of above rules
in Mogemoge (details are omitted for clarity). x,y and
dir hold geometry information of ships. To determine the
shot shooter, every ship has its own unique ID (stored in
id), and all shots also record their shooters’ ID in id.

update implements the main action, which is executed
once for every animation frames. is collide checks col-
lision against other ships. damage damages the ship. Ini-
tially, init is invoked and normal token is thrown by
every ship. When make unbeatable is invoked, normal

token is removed and unbeatable token is thrown, repre-
senting change of status for the ship.

Note that normal and unbeatable tokens describe sta-
tuses of a Ship. The init method initializes a Ship status
as a normal. In update, exist operator is used to test
if the ship is unbeatable, and if it is, remaining time is
decreased and state is changed to normal when the time
expires. make unbeatable describes to change from “nor-
mal” to “unbeatable”.

Now we turn to our four relationship rules (R2, R3,
R4, R5, R5). The rule R2 is about normal status ships.
The rule R3 is about ships and missiles. The rule R4 is
about ships and power foods. The rule R5 is about a
normal status ship and an unbeatable status ship. The
rule R6 is about a missile and an unbeatable status ship.

Figure 4 is the code which implements those rules. In
that sample, tokens are used as statuses of game charac-
ters.

For example, the rule R3 handler represents that if a
ship (which is not unbeatable) and a missile are colliding
and the ship is not a shooter of the missile, the ship is
damaged by the missile and the missile is destroyed. As
the missile is destroyed and missile token doesn’t have
the necessity reside in the token pool, there is not a *

symbol on the pattern m.missile(d).

January 18, 2006 6

By introducing join tokens, relationship rules are ex-
pressed concisely. Figure 4 directly and declaratively
represented rule descriptions summarized in this section.
There are no codes to iterate on characters list or combi-
nate characters.

5 Conclusion

In this paper, we pointed out that current scripting lan-
guages lack expressive power for complicated game inter-
actions, and proposed “join tokens” mechanism to handle
those interactions in a natural and concise manner.

We also described Mogemoge language, which incorpo-
rates join tokens as primary inter-object communication
mechanism, and demonstrated its expressive power using
example game application.

Mogemoge is a sequential language and it is similar to
ordinary programming languages except for join tokens.
In our previous research [9], we have proposed a concur-
rent scripting language which has the feature to describe
state machines. To improve expressiveness, it is necessary
to integrate those features and join tokens.

Throw-dispose scheme will be alleviated by introducing
the notation of grouping or excluding tokens. It will be a
useful way to composing some tokens as an abstract state
machine explicitly.

Surely Mogemoge has some problems, but we confirm
the possibility to express video game rules. We expect
that Mogemoge will be an effective programming tool for
video game software development.

References

[1] gamestudio. http://www.3dgamestudio.com/.

[2] Havok. http://www.havok.com/.

[3] Unrealscript language reference.
http://unreal.epicgames.com/UnrealScript.htm.

[4] David Gelernter. Generative communication in
linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1):80–112, 1985.

[5] R. Ierusalimschy, L. H. de Figueiredo, and W. Ce-
les. Lua-an extensible extension language. Software:
Practice & Experience, 26(6):635–652, 1996.

[6] projet Moscova INRIA Rocquencourt. The join cal-
culus language. http://pauillac.inria.fr/join/.

[7] Dae-Yong Kwon, Hye-Min Gil, Yong-Cheul Yeum,
Seoung-Wook Yoo, Susumu Kanemune, Yasushi
Kuno, and Won-Gyu Lee. Application and eval-
uation of object-oriented educational programming
language‘ dolittle’for computer science education
in secondary education. The Journal of Korean As-
sociation of Computer Education, 7(6):1–12, 2004.

[8] Michael Lewis and Jeffrey Jacobson. Game engines
in scientific research - introduction. Communications
of the ACM, 45(1):27–31, 2002.

[9] Taketoshi Nishimori and Yasushi Kuno. An action
game-oriented programming language (in Japanese).
IPSJ Transactions, 44(SIG15), 2003.

[10] Thiadmer Riemersma. The small scripting language.
In Dr.Dobb’s Journal. CMP Media LLC, October
1999.

[11] Katie Salen and Eric Zimmerman. Rules of Play.
MIT Press, 2002.

[12] David Ungar and Randall B. Smith. Self: the power
of simplicity. OOPSLA’87, pages 227–242, 1987.

[13] Alex Varanese and John Romero. Game Scripting
Mastery. Premier Press Inc., December 2002.

January 18, 2006 7

Ship = object {

id = 0; x = 0; y = 0; dir = 0; timer = 0;

init = method() {

throw normal; # init ship’s status

};

update = method() {

if (exist unbeatable) {

timer = timer - 1;

if (timer < 0) {

dispose unbeatable;

throw normal; # change ship’s status

}

}

if (is_key_pressed(KEY_SPACE)) {

m = new Missile;

m.x = x; m.y = y; m.dir = dir;

m.set_id(id); # owned by this ship

}

modifying x,y,dir to control the ship ...

};

make_unbeatable = method() {

timer = 100;

dispose normal;

throw unbeatable; # change ship’s status

};

damage = method(d) {

increase damage

};

is_collide = method(o) {

check collision

};

other methods ...

};

Figure 3: A Ship Code

rule R2

join *s1.normal() *s2.normal()

where s1.is_collide(s2) {

move s1 and s2 to prevent overlapping

};

rule R3

join *s.normal() m.missile(d)

where s.is_collide(m) && s.id != m.id {

s.damage(d);

m.destroy();

};

rule R4

join *s.normal() p.power

where s.is_collide(p) {

s1.make_unbeatable();

p.destroy();

};

rule R5

join *s1.unbeatable() *s2.normal()

where s1.is_collide(s2) {

s2.damage();

};

rule R6

join *s.unbeatable() m.missile(d)

where s1.is_collide(s2) {

m.destroy();

};

Figure 4: Rules implemented in Mogemoge

