Solving Inheritance Anomaly Problems
by State Abstraction-Based Synchronization

Yasushi Kuno
Graduate School of Systems Management — Univ. of Tsukuba, Tokyo
3-29-1, Otsuka, Bunkyo-ku, Tokyo 112-0012 Japan.

ABSTRACT. “Abstract state” is a programming language facility that makes
the internal state information of abstract data types available from outside, in
a controlled fashion. Abstract state is also a useful and efficient tool for spec-
ifying synchronization for parallel object-oriented languages. In this paper,
we introduce interface- and implementation- inheritance to state abstraction-
based parallel language and analyze its descriptive power. As a result, we could
obtain (1) clean, comprehensive language design, which is (2) efficiently imple-
mentable, (3) avoiding typical inheritance anomaly problems. Additionally, in
our scheme (4) type system reflects difference in objects’ synchronization be-
havior, which affects objects’ substitutability.

KEYWORDS: Concurrent OO Language, Inheritance Anomaly, Abstract State.

1 Introduction

Inheritance in object-oriented programming languages (OOPLs) is an indis-
pensable functionality for both orderly program structures and code reuse.
The same statement also holds for parallel object-oriented languages. However,
Matsuoka and Yonezawa[MAT 93] have pointed out the existence of inheritance
anomaly problems that prohibit reuse of code containing synchronization ac-
tions. Many researchers have proposed language mechanisms to alleviate the
problem, but the inheritance of synchronization code is still not widely used.
In our opinion, the reason is that simple, clean and efficiently-implementable
language designs have not been achieved yet.

We have been proposing a concept of “state abstraction,” in which the
internal states of objects are made visible from outside in an abstract and
controlled fashion. We have also proposed the use of these client-visible states,
called “abstract states,” as a primitive synchronization mechanism for parallel
object-oriented languages[KUN 97].

In this paper, we focus on the interaction between the inheritance mecha-
nism and state abstraction-based synchronization. The major contribution of
this paper is as follows: (1) With state abstraction-based synchronization, clean
and comprehensive language designs that allow inheritance of synchronization

description are possible. (2) Implementation of state abstraction-based syn-
chronization can be very efficient. (3) State abstraction-based synchronization
can solve typical inheritance anomaly problems. (4) In state abstraction-based
synchronization, the synchronization behavior of an object becomes part of the
object’s external interface.

The last point is the most important, because objects that are not substi-
tutable (due to difference in synchronization behavior) should not be declared
compatible by the language’s type system.

An outline of the rest of this paper is as follows: In section 2, we introduce
state abstraction and state abstraction-based synchronization. In section 3, we
focus on design decisions to integrate inheritance into state abstraction-based
parallel languages. In section 4, we discuss how the design described in section
3 can solve typical inheritance anomaly problems. In section 5, we turn to the
issue of implementation and show that state abstraction-based synchronization
with inheritance can be compiled to efficient codes. Finally in section 6 and 7,
comparisons to related works, a discussion and conclusion are presented.

2 State Abstraction and Synchronization

2.1 State Abstraction

In OOPLs, the state of each object is represented as a set of instance variable
values. Due to encapsulation, these values cannot be seen from outside. How-
ever, there are many occasions in which the information of an object’s internal
state is absolutely necessary. For example, an empty stack cannot be popped,
or a full bounded buffer cannot be put.

Traditionally, these situations were handled by the programmers in one of
the following ways: (1) Make some of the instance variables accessible from
outside. (2) Prepare “polling” methods, e.g. “is_empty” for stack, that return
internal state information. (3) Try-and-error scheme using error flag variable
or (preferably) exception mechanism.

For modern programming practice, (1) is unacceptable because the object’s
encapsulation is broken. (2) seems reasonable, but is unsuitable for parallel
languages because the object’s state might change between the polling method
calls and actual object access. (3) does not have this problem, but flag tests or
exception handlers clutter up the code — exception should be used for really
“exceptional” cases, not for normal lines of operation.

As a solution to the problems, we have introduced the “abstract state” as
a language feature. For each object, their associated abstract states (similar
to Pascal’s enumeration types) are declared. For example, a bounded buffer
object will be in one of the { full, mid, empty } abstract states.

Abstract state values are set in the objects’ method bodies, and can be
examined from outside. Note that those values are proper abstraction of inter-
nal state values. For example, in the ring-buffer implementation of bounded
buffers, the put method will set the abstract state to full when its input

pointer becomes equal to the output pointer (after advancing the former).

2.2 State Abstraction-Based Synchronization

Now we turn to the issue of parallel language. In parallel programming, con-
current activities require synchronization. We have noticed that most of the
uses of synchronization can be described as “delaying an action until the object
reaches some specific abstract state.”

For example, the putting to a full buffer must be delayed until the buffer
becomes mid or empty, and the getting from an empty buffer must by delayed
until the buffer becomes full or mid ! . From this observation, it will be
natural to treat the method itself as “delayed action,” and specify the required
condition (set of abstract states) for each method argument, including the
receiver object itself 2 .

When the condition is established, the object’s abstract state becomes “un-
defined” and prevents further state match until the method body re-establishes
the new state. Thus, state abstraction-based synchronization handles both con-
ditional and non-conditional (mutex) synchronization in a unified manner.

To demonstrate the practicality of our approach, we have designed and
implemented a language called p6[KUN 97]. p6’s syntax is modeled after
Misty[KUN 91] and CLU, but the object model is closer to C++ or Java in that
every object is an “implicit record” whose components are instance variables.
Hereafter, we will use p6 as an example.

In p6, the bounded buffer’s put method will be described as follows:

put = method({empty,mid}b:bbuf{mid,full}, val:int)
b.ipt := (b.ipt+1)//b.size; b.cnt := b.cnt+l; b.arr[b.ipt] := val
if b.cnt = b.size then b!{full} else b!{mid} end ¥ set new state
end put

The method header declares that the put method can proceed only when the
state of the receiver object b is { empty, mid }. It also says that the state
of b becomes { mid, full } when the method is executed; we plan to use
this information for checking validity in the future. Note that the buffer is
guaranteed to be non-full when the method actually starts, making the non-
full test unnecessary.

The complete p6 code for the bounded buffer is included in the appendix.
Further examples, including dining philosopher problem and readers/writers
problem, can be found in [KUN 97] 3 .

Tn our model, method calls (message sendings) are synchronous (“now” type); “past” or
“future” messages can be implemented using intermediate objects.

2As a result, multi-object synchronization can be specified in the same framework.

3For example, readers /writers problem with writer preference can naturally be expressed
by transition to “new reader prohibited” abstract state.

2.3 Comparison to Other Synchronization Scheme

In this section, we compare the state abstraction-based synchronization against
monitors, guards, and accept sets. We have chosen them because they are
popular and widely adopted in recent programming languages.

Monitor is one of the most popular synchronization mechanisms; recent lan-
guages as Java choose monitor as its built-in synchronization scheme. Monitor
can express mutual exclusion in a simple and safe manner. However, when it
comes to conditional synchronization (as required in bounded buffers), monitor
is as unstructured as gotos; suspension occurs in the middle of the code, and
one must throughly follow the code to understand the objects’ synchronization
behavior. In the case of state abstraction-based synchronization, mutual ex-
clusion and conditional synchronization are specified in the same framework,
suspension occurs only at method entry, and synchronization description in the
method headers and bodies are more structured.

Guards are as popular as monitors, but are more “declarative” in that they
specify synchronization condition as boolean expression. However, there are
some difficulties in when and how to evaluate the expression. In naive imple-
mentation, the expression need be evaluated at each method invocation attempt
and receiver’s state change. Moreover, evaluation must be done in the context
of callee (receiving object) with mutual exclusion, leading to additional over-
head. Yet another problem of guards are that they are predicates over objects’
internal representation and are incomprehensive to the clients. Meyer[MEY 93]
has pointed out this problem and proposed to use only public, boolean-valued
methods as guard expressions, but this leads to more evaluation overheads.
In the case of state abstraction-based synchronization, states are simple scalar
values, can be examined efficiently without side effects, and their values are
available as a part of the objects’ public interface.

Accept sets[KAU 89] (sets of method names that can be accepted) and en-
abled sets|[TOM 89] (accept sets that are of first class data type values) are
very close to state abstraction in that each accept set value can be mapped
to one abstract state. However, set notation cannot handle certain kinds of
inheritance anomalies — see section 4. As the last note, there exist similarities
between the process calculus[MIL 89] and state abstraction-based synchroniza-
tion: (1) Agent’s client-visible states are abstraction of its internal (more com-
plex) states. (2) Interaction between agents (i.e. method invocation) is possible
only when their states match 4 .

4In p6, while the receiver’s state is represented as an abstract state, the sender’s state
is represented as the current execution point. We are also working with more complete,
“symmetric” models[KUN 96].

3 State Abstraction-Based Synchronization and Inheritance

3.1 Goals and Functionalities of Inheritance

Before proceeding to p6i — an inheritance-enabled version of p6 —, some
consideration of the goals and mechanisms of inheritance are required.
In a traditional sense, inheritance consists of the following functionalities:

e Inherit a set of instance variables and their types.

e Inherit method implementations.
These are sometimes called “implementation inheritance,” whose goals are:

e Code reuse — write only “different” portion of the new class.

e Code mixin — mix up additional functionality to the base class.

There is another kind of inheritance called “interface inheritance” (or “subtyp-
ing”), whose functionality is:

e Inherit method names and signatures.
Goals of interface inheritance are:

e Avoid redundant interface declaration for similar classes.

e Provide basis for generic handling of similar objects.

Older OOPLs such as Smalltalk-80 do not distinguish between implementation
and interface inheritance, while newer OOPLs such as Java allow programmers
to control them more or less separately ° .

3.2 Parallel OOPLs and Inheritance

For parallel object-oriented programming languages, a problem called “inheri-
tance anomaly” is known[MAT 93]. Inheritance anomaly means:

e Methods that contain synchronization actions are difficult to inherit —
i.e. cannot be shared “as is” among the base class and its subclasses.

The above statement is apparently an “implementation side” view, so we prefer
to define the same problem in “interface side” terms. We named this “substi-
tution anomaly:”

e Objects that have compatible interface cannot be substituted with each
other because they behave differently with respect to synchronization.

5In Java, implementation inheritance forces interface inheritance, but not vice versa.

Note that the substitution anomaly is a slightly wider concept because the
definition also applies to objects that do not share implementation. And this
is more relevant because dynamic method dispatch, which relies heavily on
substitutability, is the heart of object-oriented programming.

The above argument suggests the following principle: if two objects’ syn-
chronization behavior differs, they should not be made substitutable by the
language’s type system.

Some researches are aimed toward definition of subtypes based on its behav-
ioral substitutability. Among these, Liskov and Wings[LIS 94] are not address-
ing synchronization ¢ . America] AME 90] has introduced notion of properties
that are used to capture behavioral side of an object, including synchronization.
However, synchronization and other behaviors (such as Last-in, First out) are
not clearly separated. Nierstrasz[NIE 93] has proposed regular types, in which
each object have its own finite state-transition that controls the availabilities
of methods, with subtyping facility. However, his work is not tied to the actual
programming language so far.

Our approach roughly corresponds to Nierstrasz’s work in that every ob-
ject have finite (abstract-) state and transitions (via method invocation), but
in our work actual transitions are explicitly specified by the programmer. A
more theorical approach would be based on the equivalence between concur-
rent processes, as in the process calculus[MIL 89], but we are aimed toward
practical/implementable programming languages, just as in [AME 90].

In the following section, we will first show some examples and then explain
our subtyping rules.

3.3 Interface Inheritance with State Abstraction-Based Synchro-
nization

Hereafter, we will use p6i as the basis for our examples and discussion. As
suggested in section 3.1, p6i has a separate module for interfaces and imple-
mentations. Below is the interface module for a bounded buffer object:

bbuf = interface { full, mid, empty }

new = method(n:int) replies(self{emptyl})

put = method({empty,mid}b:self{mid,full}, i:int)

get = method({full,mid}b:self{mid,empty}) replies(int)
end bbuf

The type identifier self denotes the interface type being defined (bbuf in this
case).

Next, we can use the interface inheritance to extend the base interface in
one of three ways: (1) The set of abstract states can be modified. (2) Method
signatures can be modified. (3) New methods can be added.

6 As their approach is based on ADT’s pre- and post-condition, guard-based synchroniza-
tion can easily be added to their proposal. However, drawbacks of guards noted in the
previous section remain intact.

In the case of (1) and (2), only those modifications that do not break sub-
stitutability are allowed (described later).

As an example, we can add the peek method to examine the next value to
be obtained:

bbuf_peek = interface extends bbuf
peek = method({full,mid}b:self{-}) replies(int)
end bbuf_peek

Now that the new interface has four methods, namely: new, get, put and peek
({-} in the argument list indicates that this method does not change the state
of the argument object). Abstract states are inherited as is in this case.

When abstract states are to be modified in the new interface, only two cases
are allowed: (1) One state in the base interface may be split into two or more
states in the new interface. (2) Some of the states in the base interface may be
removed.

These restrictions are required to maintain substitutability between the base
and new interfaces.

For example, we can create a variant of bbuf in which clients can see if half
of its space is in use or not:

bbuf_hl = interface { empty, low, high, full }
extends bbuf { mid } becomes { low, high }
end bbuf_hl

With an object which implements this interface type, get can proceed when
the state is { low, high, full }. Additionally, when such objects are used
as a bbuf object, both hight and low are treated as mid. These mappings can
automatically be handled by the compiler and the runtime.

Or alternatively, we can create an unbounded version of the buffer and make
it a subtype of bbuf:

bbuf_u = interface { empty, mid }
extends bbuf { full } removed
end bbuf_u

It may seem odd that the removal of states does not break substitutability, but
it is all right because existence of an object with any specific state depends on
the programmer anyway. This case corresponds to “constrained subtypes” in
Liskov and Wing[LIS 94].

In the above example, we know that unbounded buffers are usable in place
of bounded ones in most cases; as for the rare cases (e.g. a code that first fills
up a buffer and then passes it to someone), we consider them as logical (design)
errors. However, we prohibit removal if it causes abstract state constraint to
become empty in certain methods (see below).

Finally, the interface inheritance and substitutability rules for p6i are as
follows:

1. An interface consists of an abstract state set and zero or more method
signatures.

2. An interface may have one or more superinterface. If no superinterface
is specified, the interface is by default a subinterface of built-in interface
object T,

3. A subinterface inherits abstract state set and method signatures from
its superinterface. When inheriting method signatures, the special type
name self denotes the subinterface’s type.

4. In the case of two or more superinterfaces (multiple inheritance), the
abstract state set of the subinterface becomes the cartesian product of
the superinterfaces’ state sets, whose elements are a dot-concatenated
series of superinterfaces’ state names. As for method signatures, see 8.

5. A subinterface may split and/or remove some of its superinterfaces’ state.
In the case of removal, the removed state virtually exists, but cannot be
referred anymore. Removals that cause certain abstract state constraints
to become empty (even with possible overriding) are not allowed.

6. A subinterface may add or override method signatures. In case of overrid-
ing, the number of arguments and return values (actually 0 or 1) must be
the same, argument types must be equal to or more general (i.e. belong
to superinterface) than inherited ones, and return types must be equal
to or more specific (i.e. belong to subinterfaces) than inherited ones —
standard contravariance/covariance rulesfAME 90]. self for the first ar-
gument is an exception, because the first argument (the receiver) is used
for dynamic method dispatch.

7. When inheriting method signatures, in abstract state conditions attached
to arguments and return values, preconditions (written before each argu-
ment) must be equal to or narrower (smaller set) than inherited ones, and
postconditions (written after each arguments or the return type) must be
equal to or wider (larger set) than inherited ones — analog to standard
contravariance/covariance rules[LIS 94].

8. If two or more superinterfaces have a method with the same name, the
number of arguments and return values must be identical. Moreover, if
all arguments/return types and abstract state conditions are not identical
on those, the subinterface must override the method signature according
to the rules stated above.

In p6i, the type and interface have 1-to-1 correspondence (no genericity or
parameterized interface yet). Thus, type substitutability can be defined as
follows:

e Type A can substitute type B if the corresponding interface A’ is
(indirect-) subinterface of B’.

Intuitively, this roughly corresponds as B having more state distinction and nar-
rower synchronization condition (extended functionality in Liskov and Wing’s

7object has an abstract state set that has one unnamed state, which is split into subin-
terfaces as necessary.

term), or more constraints (constrained subtypes in Liskov and Wing’s term),
compared to A. Sound theorical bases for the above rules are yet to be inves-
tigated, however.

3.4 Implementation Inheritance with State Abstraction-Based Syn-
chronization

In p6i, object implementation is coded as class module. Every class module
must implement one or more interfaces.

bbuf_basei = class implements bbuf
slot arr:aint, size, cnt, ipt, opt:int
new = ... % same as in
get = ... % p6; see appendix
put % for the complete listing.
end bbuf_basei

By creating subclass, we can inherit the base class’s implementation. Note that
the subclass need not implement the same interfaces as its base class; interface
inheritance and implementation inheritance are totally independent in p6i.

The subclass can modify its base class implementation in one of the following
manner: (1) Subclass may have additional instance variables. (2) Subclass may
add, override or modify method definitions.

Note that method signatures can be modified as long as the subclass cor-
rectly implements the designated interface(s).

Below is an example of a class that implements bbuf _peek interface in the
previous section:

bbuf_peeki = class implements bbuf_peek extends bbuf_basei
peek = method({full,mid}b:self{-}) replies(int)
reply(b.arr[b.opt])
end peek
end bbuf_basei

The peek need not set the state of b explicitly; it is automatically restored to
the original value upon method exit (effect of “{-}” in the argument list).

As a next quesiton, when the set of abstract states are changed in a new
interface, how much of its corresponding implementation needs to be changed?
It may seem that most of the code must be modified because state values must
explicitly be set in the method bodies. However, the following observation
can alleviate the burden: (1) Some of the methods may not be related to
the changed states and can be left intact. (2) Even when the relevant state
was actually removed or split, in many cases the programmer can designate
an alternative state to use, leaving the method code unchanged. (3) Finally,
when we need to determine the new state dynamically, the operation can be
performed after the method execution has completed.

(3) comes from the fact that abstract states are some projection of the
object’s internal states, and thus can be computed functionally on demand.

To support this operation, we introduced “after daemon” methods (in CLOS
term) into p6i. Using this scheme, the implementation of bbuf_hl example can
be written as follows:

bbuf_hli = class implements bbuf_hl extends bbuf_basei
after get{mid}, put{mid} use hilow
hilow = method({mid}b:self{high,low})
if b.cnt>=b.size/2 then b!{high} else b!{low} end
end hilow
end bbuf_hli

Line 2 is the heart of this scheme. bbuf_hl interface has split the mid state into
high and low, so the behavior of get and put should be modified accordingly.
However, this modification is only required after get and put have successfully
been completed and the object’s state is mid. Only on such occasions, method
hilow is invoked as an after daemon and the correct state is re-established.
Although hilow is a private method and is not defined in the interface, public
methods can also serve as after daemons when appropriate.

When multiple levels of state splitting has occurred, after daemons are
invoked in a cascade, in base class-to-subclass orderings. This is similar to the
ordinary method combination (as in CLOS), but differs in that the necessity
of invocation is tested at each level.

One might guess that a daemon method is indifferent to a normal method,
and thus no special mechanisms are needed. However, this is not the case
for the following reasons: (1) As explained in section 2.2, the setting of state
values allows other concurrent activities to access those values (and hence the
object itself). Thus, ordinary cascaded method calls are insufficient to prevent
interference from other activities. With the daemon method, the state setting
period is extended to include the daemon method bodies (by the compiler),
preventing interference. (2) Even without the above argument, calling extra
state setting code explicitly is tedious and fallible task for the programmer.

Another criticism might be that referencing to the superclass variable leads
to the breakage of the encapsulation. However, this is indifferent from the sub-
class variable access problems; we were able to use private/protected distinction
as in C++, but we wanted to keep the language simple.

4 Solution to Inheritance Anomaly Examples

4.1 Typical Inheritance Anomaly Examples

As noted in section 1, inheritance anomaly is the major obstacle against the
code reuse of parallel object-oriented languages. In this section, we follow
the classification described by Matsuoka and Yonezawa[MAT 93], and present
solutions for their example problems. We have chosen these examples because
they all differ in the way they prohibit synchronization code reuse.

4.2 State Partitioning Anomaly

State partitioning anomaly occurs when some of the accepted states have to
be partitioned in a subclass. This is not a problem for guard-based synchro-
nization, but accept set-based synchronization suffers because all codes that
designate partitioned state need modification.

bbuf hilo in the previous section was such a case; in [MAT 93] example of
get2 — a variant of get that obtains two values at once — is shown. Below is
the solution in p6i:

bbuf2 = interface { empty, one, mid, full }
extends bbuf { mid } becomes { one, mid }
get2 = method({mid}b:self{mid,one,empty}) replies(int,int)
end bbuf2

bbuf2i = class implements bbuf2 extends bbuf_basei
after get{mid}, put{mid} use setstate
get2 = method({mid}b:self{mid,one,empty}) replies(int,int)
b.opt := (b.opt+l)//b.size; vl:int := b.arr[b.opt]
b.opt := (b.opt+l)//b.size; v2:int := b.arr[b.opt]
b.cnt := b.cnt-2; b!setstate(); reply(vi, v2)
end get2
setstate = method(b:self)
if b.cnt = b.size then b!{full}
elseif b.cnt = 0 then b!{empty}
elseif b.cnt = 1 then b!{one}
else b!{mid} end
end setstate
end bbuf2i

As a result, state partitioning anomalies can naturally be handled by abstract
state-splitting and after daemons.

4.3 History Sensitive Anomaly

History sensitive anomaly occurs when the acceptance of some methods de-
pends only on historical traces of method invocations. In the case of guards,
historical information needs be recorded in the additional instance variable,
and all affected guards need be modified to refer to this variable. In the case
of accept sets, all codes that designate affected next sets must be modified to
reflect historical conditions.

In [MAT 93], example of gget — identical to get except that it cannot be
invoked after put — is shown. Below is the solution in p6i:

bbufh = interface {empty,mid,midput,full,fullput}
extends bbuf { mid } becomes { mid, midput }
{ full } becomes { full, fullput }
gget = method({mid,full}b:self{mid,empty}) replies(int)
end bbufh

bbufhi = class implements bbufh extends bbuf_basei
after get{mid} use {mid}, put{mid} use {midput},
put{full} use {fullput}
gget = method({mid,full}b:self{mid,empty}) replies(int)
reply(b!get (D)
end gget
end bbufhi

This time, as the modified next state is uniquely determined for each method,
we only need to inform the compiler about the assignment — case (2) in section
3.4. No daemon method is necessary.

The above solution is possible because state abstraction names each state
unigely and thus allows description of simple mapping (designation of next
state). It might seem possible to add similar mappings to accept (or enabled)
sets, but as they are “sets,” two abstract states with identical acceptable meth-
ods (as in high and low in the previous section) are indistinguishable and
cannot be handled.

4.4 State Modification Anomaly

State modification anomaly occurs when subclass introduces orthogonally re-
stricting functionalities. We prefer to use the term “mixin anomaly” because
orthogonal functionalities are often represented as mixins. Enabled sets can
handle mixin anomalies by saving/restoring accept set values. Guards do not
have this capability.

In [MAT 93], an example of lockable bbuf is shown. Our solution uses lock
interface and its implementation as mixin:

lock = interface { free, locked }
new = method() replies(self{freel})
lock = method({free}l:self{locked})
free = method({locked}1l:self{free})
end lock
locki = class implements lock
new = method() replies(self{free}) reply(self$[]!{free}) end new
lock = method({free}l:self{locked}) 1l!{locked} end lock
free = method({locked}1l:self{free}) 1!{free} end free
end locki

Note that the implementation has no instance variable and acts as abstract
state placeholder. Next, we create mixed interface as follows:

bbufl = interface extends bbuf and lock
new = method(n:int) replies(self{empty.free})
put = method({empty.free,mid.free}b:self{mid.free,full.free},i:int)
get = method({full.free,mid.free}b:self{mid.free,empty.free})
replies(int)
end bbufl

In p6i, the interface can have multiple base interface (multiple inheritance),
and the abstract state set of resulting interface becomes the production of base
interface state sets, whose elements are dot-concatenated sequences of base
interface states.

Here, signatures of put and get were overridden so that these operations
are called only when the lock is free. However, this change only restricts the
allowable states, so previous implementations of put and get are conforming
to this new interface and thus can be reused.

Implementation (class) modules are limited to single inheritance, but we can
hold the lock object in a state variable and delegate appropriate operations:

bbufli = class implements bbufl extends bbuf_base
slot 1l:lock
delegate lock, free to 1
new = method(n:int) replies(self{empty.free})
b:self := super(n); b.1l := lock!new(); reply(b!{empty.freel})
end new
end bbufli

Thus, the only method that needs redefinition is new; all other methods are
reused intact. As an explanation, the above code without the delegate clause
will be as follows:

bbufli = class implements bbufl extends bbuf_base
slot 1l:lock
new = method(n:int) replies(self{empty.free})
b:self := super(n); b.l := lock!new(); reply(b!{empty.freel})
end new
lock = method({*.free}b:self{-.locked}) b.1l!{-.locked} end lock
free = method({*.locked}b:self{-.free}) b.1l!{-.free} end free
end bbufli

Note that lock/free leaves the {empty,mid,full} component intact (be-
cause they are orthogonal) in this case; they can be designated to specific
values or daemons can be used as explained previously.

Apparently, “state explosion” will occur with only several number of mixins.
The problem is alleviated by wildcards (“#”) as shown above, or by splitting
only some designated states (in case of non-orthgonal splitting), but we are
looking for better solution.

5 Implementation Issue

To show that efficient implementation of state abstraction-based synchroniza-
tion can be constructed, we briefly describe design and performance of p6/
SPARC[KUN 97], a shared-memory multiprocessor implementation of p6 lan-
guage. The p6i implementation is currently under development, but its runtime
design and performance will be similar to that of p6.

p6/SPARC currently runs on SparcServer/1000 (4x50MHz SuperSparc+).
The compiler accepts p6 source and emits SPARC assembly code. The gener-
ated code is assembled and linked with the runtime library, including Solaris
2.x thread library. The runtime framework of p6/SPARC is shown in Figure
1. A scheduler thread handles the resumption of the suspended method entry,
while several executor threads runs actual program codes in parallel.

scheduler executor
thread threads
A A \ o
syncQ execQ
head head
dep.
frames
N—" dep.
suspended ready frames
frames frames

Figure 1: Runtime framework of p6/SPARC

The state abstraction-based synchronization is handled by the generated
codes at the top of the method entry. Both the current state and condition
are represented as bit masks, so state matching can be tested efficiently with
single “and” operation. To prevent interference by other CPUs, each argument
is locked and then tested for state match. To prevent deadlocks, locks are
acquired in the increasing memory address order. If all matches succeed, locks
are released and the method body is executed.

When the match fails and suspension occurs, the object’s execution context
is saved in the memory area (frame), queued in the SynqQ, and the control is
returned to the caller. As the caller must also be synchronized, cascaded sus-
pension occurs. These “dependent” frames are linked to the suspended frame.
This scheme is similar to StackThreads proposed by Taura et. al.[TAU 94],
with additional mutex controls to guard from interference by other CPUs.

When a state setting code is executed, the code also wakes up the (possibly)
sleeping scheduler. When woken up, the scheduler scans SyncQ and moves
ready frames (and its dependent frames) to ReadyQ.

Table 1 shows the measured overhead for some primitives. The performance
of method calls with abstract state synchronization is very good, while the
changing of abstract state is relatively slow, because a condition variable must
be set to wake up the (potentially) sleeping scheduler. Note that the overhead
is due mainly to Solaris 2.x thread library’s condition variable implementation;
we are looking for an alternative that does not rely on this slow implementaiton.

Table 1: Overheads of p6/SPARC Primitives

Operation Time
Method Call without Synchronization 0.2usec.
Method Call with Synchronization 0.6usec.
(Setting Abstract States) 2.2usec.
Suspension 28.2usec.
Scheduling 14.7psec.
Resume from Suspension 21.3psec.

p6i can be implemented using almost identical framework, with additional
indirection for VFT (vitrual function table) access. One issue in p6i is rep-
resentation of abstract state and state mask information, because the same
object must behave as several interface types. For example, abstract state of
bbuf shown in section 3.3 can be expressed in three bits:

100:full, 010:mid, 001l:empty
However, if bbuf_hl was introduced, four bits should be used instead:
1000:full, 0110:mid, 0100:high, 0010:1low 0001:empty

With this assignment, the state mask for the superinterface (e.g. {full,mid} =
1110) correctly captures states belonging to subinterfaces (e.g. {low} = 0010).
However, the assignment cannot be determined until all interfaces used for the
program is collected.

Thus, we are currently planning for linker-assigned bit masks, dynamically
switching between efficient, word-sized bit vector (when possible) and more
general, slower representation. For mixins, the “slower” version further has
two alternatives, namely: (1) expand cartesian product to long (in-memory)
bit vectors, or (2) simply combine multiple bit masks and perform additional
computation on condition checks. The appropriate choice requires further in-
vestigation and experiments.

Another p6i issue is after daemons. We are planning to copy inherited
method bodies that require after daemons, and embed the bodies of daemons
in place of the state setting code. This is possible because the state names
in the state setting code are compile-time constant. Also note that scheduler
wakeup is required only once after the final state has determined — thus, the
nesting of the subclass has no impact on wakeup overhead noted previously.

6 Comparison to Related Works

The inheritance anomaly problem has attracted many researchers’ interests,
and numerous “solutions” have been proposed. In this section we compare

these proposals with our approach, grouped by base synchronization scheme
they have adopted.

Many parallel object-oriented programming languages are based on explicit
message receiption (or bodies), but little attempt has been done to introduce
inheritance to those langauges because bodies have to be rewritten when syn-
chronization condition changes. Among these, Caromel[CAR 93] has proposed
first-classing relevant facilities (messages, guards, ...), with dynamic and incre-
mental modification of their combination. This scheme is quite flexible, but
actual modification of existing bodies may not be so easy. The scheme also
might incur too large an overhead for fine-grained parallelism.

Other languages are based on guards, but simple guards cannot deal with
history-only sensitivities, as suggested in the previous section. Some researchers
have supplemented guards with additional mechanisms[NEU 91][MCH 94]. In
our opinion, they are more or less hybrid approach and makes the language
more complex. Aside from these, Frglund made guard expression incremen-
tally modifiable[FRO 96], but this does not handle history-only sensitivities.
Additionaly, for all of these scheme, the weak points of guards suggested in
section 2.3 remain intact.

The third category is based on accept sets[KAU 89][TOM 89][AND 92]. Ad-
ditionally, Ishikawa[ISH 92] has suggested use of after demon as described in
section 3.4. However, the accept set-based scheme still do not handle the state
partitioning described in section 4.2 satisfactorily, as Matsuoka and Yonezawa
described[MAT 93].

The fourth category is concurrency annotation[LOH 93|[BAQ 95]. In this
scheme, the sequential code and its concurrency behavior, described as an-
notation, are made distinct. When the grain of annotation is made small,
the amount of code that requires modification upon synchronization condition
change becomes smaller. However, modification is still required for all affected
methods, making the scheme unsatisfactory.

The fifth approach, proposed by Matsuoka and Yonezawa|MAT 93] is a
hybrid one, and can be summarised as follows: (1) For each object, prepare a
special method that calculats the next accept set (set of method names that
can be executed). (2) This special method can be overridden or extended for
a subclass using normal inheritance mechanism. (3) The actual form of this
special method is either a synchronizer (maps guard expressions to accept sets),
or a transition specification (choose accept sets based on state transition). (4)
Operations on accept sets are restricted to compile-time expression, allowing
efficient implementation.

This approach has the following strong points: (1) Synchronization handling
is separated from ordinary methods, allowing single special method to be used
for many ordinary methods (and for different objects through inheritance).
(2) Frequently used transition patterns (state push/pop, apply once, etc.) are
collected and supplied as library features.

On the other hand, it has the following weak points: (1) To understand the
behavior of an object, one must read the special method and ordinary method

in parallel, leading to some awkwardness. (2) Library approach seems more or
less ad hoc. (3) When guards are used, they have the same drawbacks described
in section 2.3.

The sixth and last category is Meseguer’s Maude language[MES 93] and its
successor[LEC 96]. In Maude, objects’ internal state values and their transi-
tions are described using concurrent rewriting logic. The behavior of subclass
objects is defined in the same framework with additions and modifications of
terms and rewriting rules to the base class.

In this approach, the programmer directly specifies the objects desirable
behavior and need not specify synchronization at all; thus inheritance anomalies
are avoided altogether. The strong points of Meseguer’s approach are as follows:
(1) Concurrent rewriting logic provides accurate execution semantics of the
language. (2) No explicit description of parallelism and synchronization actions
are required.

On the other hand, it has following weak points: (1) To construct a real pro-
gramming language, one has to use a proper subset of rewriting logic (actually
Mesegeur has done this for Maude langugage). (2) Even on this restricted sub-
set, the execution requires dynamic pattern matching as a primitive operation.
Thus, execution speed will not be very good.

Generally speaking, differences between the Mesegeur’s approach and others
(including our approach) are similar to differences between specification-based
languages (Obj, Larch, IOTA, ...) and traditional programming languages. The
former is based on logical specification and is more accurate, but tends to be
complex or slower. The latter is more or less an abstraction of current machine
hardware, thus the gap between its execution model and logical specification
tends to be larger, but efficient implementation is possible. We are aimed at
the latter direction.

Now, we compare pb6i against works other than Meseguer’s. In the above
categories, explicit message acceptance, accept/enabled set, and concurrency
annotation do not provide satisfactory solution to inheritance anomaly prob-
lems. Guard-based scheme is unsatisfactory because of problems listed in sec-
tion 2.3.

Matsuoka’s proposal does contain guards, but as it have many intersting
aspects, we compare his approach with p6i more throughly. Compared with
this, the weak point of p6i is as follows: (1) Synchronization descriptions are
closely tied to the method code and cannot be reused separately.

However, the synchronization conditions in the method headers and state
setting code in the method bodies can be inherited separately through interface
inheritance and implementation inheritance. Moreover, we can gather state
setting code as private methods and share them from many places; the same
also holds for after daemons.

The strong points of p6i are as follows: (1) The operation on instance vari-
ables, or concrete states, and abstract states can be described at a single place
(method bodies). (2) A smaller number of language constructs and compact
notation leads to more learnable, comprehensive language. (3) State matching

is actually a simple bit-mask operation; it is simple, efficient and side-effect
free.

Another difference is that the abstract state information is accessible from
other objects. Although this is not a prerequisite for state abstraction-based
synchronization, this is important, as the avoidance of substitution anomaly
(section 3.3) is crucial to parallel object-oriented languages.

7 Conclusion

In this paper, we have presented state abstraction-based synchronization for
parallel object-oriented programming languages and its inheritance-enabled ex-
tension. Our scheme solves inheritance anomaly problems described by Mat-
suoka and Yonezawa[MAT 93] in a straightforward manner. Compared to the
previous works, we could contribute the following: (1) clean and comprehen-
sive language design which is (2) efficiently implementable, (3) avoiding typical
inheritance anomaly problems, and (4) address the problem of substitution
anomaly.

On the other hand, we need more to implement research in the following
directions: (1) Investigate the relation of our model with theoretical works
such as process calculus[MIL 89] or regular types|NIE 93]. (2) Test our ideas
on larger systems and accumulate programming experiences. (3) Transport
existing implementation to other (presumably distributed) platforms.

Acknowledgment

We would like to thank Prof. Satoshi Matsuoka of the Tokyo Institute of
Technology for suggesting relevant readings. We are also thankful to the OOP-
SLA’97 and POPL’98 referees for their helpful and insightful suggestions.

References

[AME 90] AMERICA, P.: A Parallel Object-Oriented Language with Inheri-
tance and Subtyping, Proc. OOPSLA/ECOOP’90, pp. 161-168, 1990.

[AND 92] ANDERSEN, B.: Ellie: A General, Fine-Grained, First-Class,
Object-Based Language, JOOP, vol. 5, no. 2 and 3, 1992.

[BAQ 95] BAQUERO, C. et al.: Integration of Concurrency Control in a
Language with Subtyping and Subclassing, Proceedings of USENIX
COOTS95, 1995.

[CAR 93] CAROMEL, D.: Toward a Method of Object-Oriented Concurrent
Programming, CACM, vol. 36, no. 9, pp. 90-102, 1993.

[FRO 96] FROLUND, S.: Coordinating Distributed Objects, MIT Press, 1996.

[ISH 92] ISHIKAWA, Y.: Communication Mechanism on Autonomous Ob-
jects, Proc. OOPSLA’92, pp. 303-313, 1992.

[KAU 89] KAFURA, D. G., LEE, K. H.: Inheritance in Actor based concurrent
object-oriented languages, Proc. ECOOP’89, pp. 131-145, 1989.

[KUN 91] KUNO, Y.: Misty — An Object-Oriented Programming Language
with Multiple Inheritance and Strict Type Checking, in JSSST ed.,
Advances in Software Science and Technology, vol. 3, pp. 109-125,
Iwanami Shoten and Academic Press, 1991.

[KUN 96] KUNO, Y., OHKI, A., UBAYASHI, N.: “Symmetric” Message Pass-
ing and Its Implementation (in Japanese), IPSJ 96-PRO-8-12, 1996.

[KUN 97] KUNO, Y., OHKI, A.: p6: A State Abstraction-Based Parallel
Object-Oriented Language (In Japanese), Trans. IPSJ, vol. 38, no. 3,
pp. 563-573, 1997.

[LIS 94] LISKOV, B., WING, J.: A Behavioral Notion of Subtyping,
TOPLAS, vol. 16, no. 6, pp. 1811-1841, 1994.

[LOH 93] LOHR, K-P.: Concurrency Annotations for Reusable Software,
CACM, vol. 36, no. 9, pp. 81-89, 1990.

[LEC 96] LECHNER, K. et al.: (Objects + Concurrency) & Reusability —
A Proposal to Circumvent the Inheritance Anomaly, Proceedings of
ECOOP’96 (Springer LNCS 1098), pp. 232-247, 1996.

[MAT 93] MATSUOKA, S., YONEZAWA, A.. Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming Languages,
in G. Agha, A. Yonezawa, P. Wegner, eds., Research Directions in
Concurrent Object-Oriented Programming, MIT Press, 1993.

[MCH 94] MCHALE, C.: Synchronization in Concurrent, Object-oriented
Languages: Expressive Power, Genericity and Inheritance, Ph. D
Thesis, University of Dublin, Trinity College, 1994.
ftp://ftp.dsg.cs.tcd.ie/pub/doc/gsg-86b.ps.gz

[MES 93] MESEGUER, J.: Solving the Inheritance Anomaly in Concurrent
Object-Oriented Programming, Proc. ECOOP’93 (Springer LNCS-
707), pp. 247-267, 1993.

[MEY 93] MEYER, B.: Systematic Concurrent Object-Oriented Program-
ming, CACM, vol. 36, no. 9, pp. 56-80, 1993.

[MIL 89] MILNER, R.: Communication and Concurrency, Prentice Hall, 260p,
1989.

[NEU 91] NEUSIUS, C.: Synchronizing Actions, Proc. ECOOP’91 (Springer
LNCS 512), pp. 118-132, 1991.

[NIE 93] NIERSTRASZ, O.: Regular Types for Active Objects, Proc. OOP-
SLA’93, pp. 1-15, 1993.

[TAU 94] TAURA K. et al.: StackThreads: An Abstract Machine for Schedul-
ing Fine-Grained Threads on Stock CPUs, in Proc. Workshop on
Theory and Practice of Parallel Programming (Springer LNCS 907),
pp. 121-136, 1994.

[TOM 89] TOMLINSON, C., SINGH, V.: Inheritance and Synchronization
with Enabled-Sets, Proc. OOPSLA’89, pp. 103-112, 1989.

Appendix: Complete List of Bounded Buffer Example in p6

aint = array[int] AN
bbuf = class { full, empty, mid } %2
slot arr:aint, size, cnt, ipt, opt:int %3
new = method(n:int) replies(bbuf{emptyl}) Y2

return(bbuf$[arr:aint!new(n),size:n,cnt:0,ipt:0,0pt:0] ! {emptyl}) %5

end nw

put = method({empty,mid}b:bbuf{mid,full}, val:int)
b.ipt := (b.ipt+1)//b.size; b.cnt := b.cnt+l; b.arr[b.ipt] := val %6
if b.cnt = b.size then b!{full} else b!{mid} end

end put

get = method({full,mid}b:bbuf{mid,empty}) replies(int)
b.opt := (b.opt+l)//b.size; b.cnt := b.cnt-1; v:int := b.arr[b.opt]
if b.c = 0 then b!{empty} else b!{mid} end
return(v)

end get

end bbuf

1. array[7] means array of type T'. The array size is not part of the type.

2. Start of class definition, followed by the list of abstract states that this
class object can have.

3. Declare instance variables.

4. Start of method definition. In p6, there are no distinction between class
methods and instance methods. All methods can be invoked through

the expression: typename!methodname(argl, arg2, ...) However,
when the type of the first argument is the class type itself, the following
expression can also be used: argl!methodname(arg2, ...) This can

be regarded as an instance method.

5. bbuf$[...] allocates the object’s implicit record and initializes its fields.
expression!{statename} set abstract state for an object, whose type
must be same as the srrounding class type.

6. // is a modulo operator.

