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Abstract

We have been proposing concept of “abstract state,” in which internal states
of encapsulated objects are made visible as a part of objects’ external inter-
face. In this paper, an idea of synchronization mechanism based on abstract
states is described, along with design/implementation of parallel object-
oriented language “p6.” Because abstract states are part of objects’ interface
and observable/understandable from outside, abstract state-based synchro-
nization is superior to guards and other existing synchronization scheme in
that selective message sending and multi-object synchronization can be de-
scribed, and codes are more comprehensive. An implementation of p6 on
a shared-memory multiprocessor and its evaluation is also described, with
the result that efficient implementation of multiple-object synchronization is
possible.



Chapter 1

Introduction

In object-oriented programming languages, objects’ internal states are hidden
inside and protected from external access. The term “encapsulation” or
“information hiding” are used to denote this property, and it greatly eases
program design because objects’ internal states can be designed independent
of objects’ users (client objects).

However, in some cases it is desirable to expose objects’ state information
to their clients. We have proposed a mechanism called “state abstraction,”
in which such information can be used from clients in a controlled fashon[1].
In this report, application of state abstraction to parallel programming lan-
guages and its initial evaluation are described. In chapter 2, the idea of state
abstraction is briefly introduced. In chapter 3, application of state abstrac-
tion to parallel languages is discussed. In chapter 4, design of p6, a parallel
object-oriented programming language, which incorporates state abstraction-
based synchronization, is explained. In chapter 5, implementation and initial
evaluation results of p6 language on a SMP (symmetric multiprocessor) are
described. Finally in chapter 6, discussion and summary are presented.
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Chapter 2

Objects and Their Abstract
States

2.1 Pros and Cons of Information Hiding

In object-oriented programming languages (OOPL), objects’ state informa-
tion is stored in their instance (or state-) variables, and those variables are not
directly accessible from outside. This kind of protection is usually refereed
as “encapsulation.” Objects’ external interface solely consists of information
about their methods (operations). The results of encapsulation are:

• Information hiding — Internal data structure of objects can be de-
signed/changed without affecting client code (outside code that make
use of these objects).

• Polymorphism — Various objects can be used interchangeably as long
as their external interface remains compatible.

However, not all of the methods included in the objects’ interface is
callable at any moment. For example, in case of a “stack” object, its “pop”
method is not available when the stack is empty. Similarly, in case of bounded
buffer object, “put” method cannot proceed when the buffer is full. In short,
availability of methods are dependent of objects’ internal states. When using
classical OOPL, this problem has been approached in the following way:

A. Those methods that cannot be applied in the current state notify fail-
ure, by using status flag or exception.
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B. Prepare additional method to examine objects’ current internal state.

The former strategy is applicable only when the caller need to know simple
availability (yes/no) information. For example, imagine the situation that
two buffers are available and we want to put the data in either of them, but
want to avoid one whose remaining capacity is less than 50% while the other
retains more capacity. 1

The latter strategy does not have this problem, but cannot be used in
parallel programming language because obtained state information can be
obsoleted at any moment when other objects concurrently change the state
of the object.

2.2 The Idea of Abstract State

The authors’ opinion is that the problems stated above are direct consequence
of information hiding, in which objects’ state information is perfectly shielded
from external access. However, some essence of objects’ state information
should be exposed in a controlled fashion. In fact, both of two strategies
listed in the above section exposes some part of objects’ state (by using
flags/exceptions or additional methods).

However, exposing internal state variables as is will be undesirable be-
cause it breaks major benefits of encapsulation stated above. Thus, our
approach is to enumerate “abstract” distinguishable states of an object (just
like enumeration types in Pascal language), and make only this value observ-
able from outside the object. We call this framework “state abstraction,”
and enumerated values noted above as “abstract states.”

In case of the bounded buffer object, its abstract states will be as follows
(we enclose abstract state names in braces):

{empty, mid, full}

In case whether more than 50% capacity remains is an issue, we can change
this to “{empty, midlow, midhigh, full}.” As to application of state
abstraction in sequential programming language, see [1].

1We can attain this behavior by preparing put method that fails when remaining ca-
pacity is less than 50%, but this is not very smart.
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Chapter 3

Parallel Object-Oriented
Languages and Abstract States

3.1 Parallel Languages and Synchronization

In parallel programming, we need some synchronization mechanism that con-
trols orderings of multiple concurrent execution activities. There are several
reasons for the need of synchronization mechanism; one major use of it is to
delay execution until some specific method becomes runnable (e.g., to delay
“put” method while a bounded buffer object is in “full” state).

In pure actor model, the unit (scope, extent) of mutual exclusion is single
actor, and all messages (method invocation requests) are processed on first-
come first-served (FCFS) basis. This model is very simple and clear, but to
make a practical programming language, selective message processing (just
as in processing “get” only when the buffer is non-empty) will be crucial (in
pure actor model, this kind of action is accomplished through use of multiple
separate actors, which is all right for a computational model but awkward
for a practical programming language).

The consequence is that the majority of parallel object-oriented program-
ming languages are equipped with various feature-rich selective message re-
ceive mechanisms, such as guards, enabled sets, synchronizers, wait/signal
(like Hoare’s monitors), explicit message receive, meta-methods, and so on.
Note that function of these mechanisms are to delay processing of some (once
received) messages, and the message sender cannot perceive this delay. Thus,
the sender cannot change their action according to whether the message being
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sent will be processed immediately or not.

3.2 State Abstraction-Based Synchronization

Above consideration led us to the idea of state abstraction-based synchro-
nization, in which synchronization actions are described using abstract state.
In this framework, we attach abstract state constraints on each argument in
a method header:

put = method({empty,mid}b:bbuf ...)

The above code indicates that “put” method can execute only when the first
argument (receiver) object, which is of bbuf type, must be in either empty or
mid abstract state. If this condition does not hold when the message is being
sent, message sending itself is delayed until the condition becomes satisfied
(through the execution of other — “get” in this case — method).

This framework is somewhat similar to “enabled set” approach, but differs
in the following points:

(1) Abstract state information is included in objects’ external interface and
is observable from outside.

(2) Multiple arguments of a method can have state constraints, leading to
multiple-object synchronization.

As for (1), we might use this information to accomplish selective message
sending. See the following piece of code:

select b1!put(...) or b2!put(...) end

This code put an item to either of two buffers which is not full, but execution
is delayed if both were full.

The point (2) leads to very powerful and easy-to-use synchronization
specification. For example, following code could be used to solve the infamous
dining philosopher problem:

pick = method({down}f1:fork, {down}f2:fork)
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Above method header specifies that the method pick is accepted only when
two folk f1 and f2 are both in down state.

The framework of state abstraction has some similarities with Milner’s
process calculus [6], in which multiple agents are connected through their
ports, and computation is modeled as message exchanges plus each agents’
state changes.

In process calculus, agents are associated with their limited set of states,
and events (= message send/receive and internal actions) triggers state tran-
sition. States in process calculus correspond to observable difference in
agents’ behavior; even when internal structure of the object is a complex
one (with multiple sub-agents), these complex internal states do not expose
to outside as long as they are not distinguishable from the object’s observable
behavior. Thus, states in process calculus is largely equivalent to abstract
states in our framework.
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Chapter 4

p6 — COOPL with State
Abstraction

4.1 Design Criteria for p6 Language

To show practicality and usefulness of the idea presented in the previous
chapter, we have designed and implemented a concurrent object-oriented
programming language called “p6,” whose only synchronization mechanism
is state abstraction-based synchronization. Here is the design criteria for p6:

a. p6 should be class-based concurrent object-oriented language, because
(1) declaration of abstract states will naturally fit into class declara-
tion, and (2) class inheritance with state partitioning will be interesting
research topic as a next stage.

b. p6’s goal is provision of minimal test-bed for state abstraction-based
synchronization, so complex language features such as dynamic dis-
patch, inheritance, type parameters (genericity), and separate compi-
lation are left out.

c. p6 have only one message type in order to keep language simple and
compact. However, various message styles can be expressed by combi-
nation of this base message type and support objects.
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4.2 p6’s Message Facility

In p6, message sending is expressed in the following syntax:

obj!method(arg,…)

var := obj!method(arg,…)

The first line sends message (with selector method) to obj, and does not
receive a reply value. The second line is likewise, but receive reply value
and stores it into var. p6 is a strongly typed language; each expression has
a unique type determined at compile-time. Let us express this type of an
expression exp as type[exp]. Then, above two lines are considered equivalent
to the following lines:

typeof [obj]!method(obj, arg,…)

var := typeof [obj]!method(obj, arg,…)

Thus, method selection in p6 relies only on the type of the first argument
(receiver object). 1

As in process calculus, p6’s message is synchronous, in that execution of
message sender is delayed when abstract state constraints associated with the
method are not satisfied. This also holds in the case where the sender does
not receive reply from the receiver object. However, once the synchronization
constraint is satisfied, both object execute in parallel (fig. 1 left). In the case
of message with reply, the sender is suspended until a reply message arrives
(fig. 1 right). In both cases, it is assured that the abstract state constraints
have been satisfied at least once before the receiver resumes execution (how-
ever, those states might already have been changed by another object or the
receiver itself).

Note that reply statement does not terminate the receiver’s method ex-
ecution; receiver continues until end of the method body is reached or it
explicitly executes exit statement. For the convenience of the programmers,
p6 also have return statement, which is semantically equivalent to reply

followed by exit.
p6 does not have asynchronous messages and future messages, but they

can be implemented by introducing relay objects. In the case of asynchronous

1Currently, p6 does not have dynamic dispatch functionality. In the future, we are
planning to incorporate dynamic dispatch through type generator any[T], as in Misty[2]
language proposed by one of the author.
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reply statement

sender senderreceiver receiver

send send

sync
established

sync
established

sender does not receive reply sender receives reply

Figure 4.1: Message Sends in p6

(past mode) message (see fig. 4.2), the relay object simply passes arguments
handed by the sender unmodified to the receiver, and as the relay does not
have abstract state constraints, the sender continues execution without delay.
The relay itself must wait until abstract state constraints of the receiver
method become satisfied.

exit

sync.
established

send

sender relay receiver

Figure 4.2: Implementation of Past Message using Relay

When the sender wants to send asynchronously and also wants to receive
reply (future message), the relay object waits until the receiver returns the
reply message and stores it. On the other hand, when the sender want to
use reply value, it sends “touch” message to the relay. If the reply has yet
to been stored in the relay, invocation of this “touch” method is delayed (see
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fig. 4.3). Finally when the reply value is available, “touch” method returns
the value to the original sender.

touch

exit
reply statement

sync.
established

send

sender relay receiver

Figure 4.3: Implementation of Future Message using Relay

4.3 Example 1: Bounded Buffer

To demonstrate basic syntax and functionalities of p6, an example of bounded
buffer class is presented. The syntax of p6 is modeled after CLU[3] and
Misty[2].

aint = array[int] %1

bbuf = class { full, empty, mid } %2

slot a:aint, size:int, c:int, i:int, o:int %3

new = method(n:int) replies(bbuf{empty}) %4

return(bbuf$[a:aint!new(n), size:n, c:0, i:0, o:0]!{empty}) %5

end new

put = method({empty,mid}b:bbuf{mid,full}, i:int) %6

b.i := (b.i + 1) // b.size %7

b.c := b.c + 1

b.a[b.i] := i

if b.c = b.size then b!{full} else b!{mid} end

end put

get = method({full,mid}b:bbuf{mid,empty}) replies(int) %8

b.o := (b.o + 1) // b.size %9
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b.c := b.c - 1

v:int := b.a[b.o]

if b.c = 0 then b!{empty} else b!{mid} end

return(v)

end get

end bbuf

1. Define aint as an “array of integer” type.

2. Define bbuf to be a class (and hence a type). A bbuf object is in one
of three abstract states declared here.

3. A bbuf object’s internal representation is an implicit record with five
state valiable: a, size, c, i and o (the record has additional hidden field
to store abstract state value and mutex data structures). The above
variables represent buffer array, buffer size, number of items currently
stored, input pointer and output pointer respectively (circular buffer
algorithm is used).

4. new method takes an integer argument and returns bbuf object in ab-
stract state empty. The integer argument specifies size of the created
bbuf.

5. The body of new allocates internal record with appropriate field values,
and set its abstract state to empty before returning.

6. put method can proceed only when its first argument, which must be
a bbuf have either state emtpy or mid (otherwise the method call is
delayed), and expedted to set the bbuf’s state to either mid or full.

7. The body of put advances input pointer and stores the data to the
prace where input pointer point to, increments item count, compares
the value against size and sets state to either full or mid according
to the result of comparison.

8. get method can proceed only when its first argument, which must be a
bbuf, is in abstract state mid or full, and is expected to set the bbuf’s
state to either mid or empty.
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9. The body of get advances output pointer and extracts value from where
it points to, decrements item count, compares the value against zero,
and sets state to either mid or empty according to the result of com-
parison.

Next, we present an example of transferring data using bbuf presented above.
Below is the class worker that generate/consume specified number of data
item:

worker = class

produce = method(n:int, b:bbuf)

i:int := 1

while i < n do b!put(i); i := i + 1 end

b!put(0)

end produce

consume = method(b:bbuf)

while b!get() ~= 0 do end

end consume

end worker

Program starts from method startup contained in the class main:

main = class

startup = method()

b:bbuf := bbuf!new(100)

worker!produce(10000, b)

worker!consume(b)

end startup

end main

4.4 Example 2: Reader/Writer Problem

As an example that requires more complicated synchronization, we present
reader/writer problem here. To avoid starvation, when a writer requests
write lock, all readers requesting read lock henceafter will be delayed until
the writer’s request is granted.

lock = class { free, reading, rtow, writing }

slot r:int, w:bool
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new = method() replies(lock{free})

reply(lock$[r:0, w:false]!{free})

end new

readlock = method({free,reading}r:{reading})

r.r := r.r + 1; r!{reading}

end readlock

readrelease = method({reading,rtow}r:lock{reading,rtow,free})

r.r := r.r - 1

if r.r = 0 then r!{free}

elif r.w then r!{rtow}

else r!{reading} end

end readrelease

writelock = method({free,reading,rtow}r:lock{writing})

if r.r = 0 then

r!{writing}

else

r.w := true; r!{rtow}; r!waittowrite()

end

end writelock

waittowrite = method({free}r:lock{writing})

r!{writing}

end waittowrite

writerelease = method({writing}r:lock{free})

r.w := false; r!{free}

end writerelease

end lock

A lock has four abstract state, namely: free, reading, writing, and rtow.
When the lock is free, both readlock method and writelock method can
be invoked, and changes the lock’s state to reading and writing correspond-
ingly.

In reading state, additional readlock can be called, but in writing,
further writelock is delayed. When writerelease is called, (as the number
of writer holding the lock must be one) the lock becomes free immediately.
However, in the case of readrelease, the lock becomes free only when all
the reader holding a lock released one.

Moreover, when writelock is called in reading state, the lock’s state
changes to rtow, and writelock method invokes waittowrite internally to
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delay itself until the state becomes free. State transition diagram of a lock

object is presented in fig. 4.4)。

writelock’/2
writelock readlock

free readingwriting

writerelease readrelease

rtow

writelock’/1

readreleasereadrelease

readlock

readrelease

Figure 4.4: State Transition Diaglam of lock Object

In this solution, when a writer calls writelock in reading state, the
method suspends untill the lock becomes free and then have to hunt for lock
with any possible competitor at that moment (no assurance for obtaining the
lock next). To correct this situation, it only need to add another new state
(say wturn), and exclude readers from obtaining the lock while in this state,
as follows:

rwlock = class { free, reading, wreg, wturn, writing }

slot r:int, w:int

new = method() replies(rwlock{free})

reply(rwlock$[r:0, w:0]!{free})

end new

readlock = method({free,reading}r:rwlock{reading})

r.r := r.r + 1; r!{reading}

end readlock

readrelease = method({reading,wreg}r:rwlock{reading,wreg,free})

r.r := r.r - 1

if r.w > 0 then

if r.r = 0 then r!{wturn} else r!{wreg} end

else

if r.r = 0 then r!{free} else r!{reading} end

end

end readrelease

writelock = method({free,reading,wreg}r: rwlock{writing})
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r.w := r.w + 1

if r.r = 0 then r!{writing} else r!{wreg}; r!waittowrite() end

end writelock

waittowrite = method({wturn}r:rwlock{writing})

r!{writing}

end waittowrite

writerelease = method({writing}r:rwlock{free,wturn})

r.w := r.w - 1

if r.w = 0 then r!{free} else r!{wturn} end

end writerelease

end rwlock

In general, programming based on abstract state description is straitforward
and comprehensive even when state transition become complicated.

4.5 Multi-Object Synchronization

Next we present the infamous “dining philosopher” example. First, only
functionality required for“fork” objects is to record its states, thus fork

object have no instance variables:

fork = class { up, down }

new = method(n:int) replies(fork{down})

reply(fork$[]!{down})

end new

pick = method({down}f1:fork{up}, {down}f2:fork{up})

f1!{up}; f2!{up}

end pick

release = method({up}f:fork{down})

f!{down}

end release

end fork

Note that pick method can proceed only when both arguments (which are
fork objects) are in down state, and their states are changed to up. Next,
“philosopher” class is as follows:

phil = class

life = method(n:int, f1:fork, f2:fork)
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while true do

% thinking...

fork!pick(f1, f2)

% eating...

f1!release(); f2!release()

end

end life

end phil

As shown above, multi-object synchronization is valuable tool to write simple,
comprehensive and straitforward parallel programs; in case of dining philoso-
pher problem, thinkin in term of “pick up at once” is the most natural and
straightforward way of solving the problem.
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Chapter 5

p6 Implementation

5.1 Implementing State Abstraction-Based Syn-

chronization

The most basic functionality of state abstraction-based synchronization is to
delay method invocation until specified abstract state condition become satis-
fied. Conceptiall, the delay occurs when the message is being sent. However,
there are three alternatives to implement the behavior stated above:

(a) The sender waits until the condition become satisfied.

(b) Insert some intermediate entity (such as message router) between the
sender and the receiver, and this intermediate entity handls synchro-
nization.

(c) The receiver performs synchronization before actual computation starts.

In design (a), variable behavior with respect to delay occurence (such as
selective message sending) is easily implemented. On the other hand, when
all code necessary for synchronizaiton actions are emitted at each message
expression, code size will be increased significantly.

The design (b) will be simpler because all synchronization can be handled
by intermediate entity, but the fact itself might lead to single performance
bottleneck.

In design (c), code size will be moderate without creating single bottle-
neck, but selective message sending will require extra information exchange
between the sender and the receiver.
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Merits and demerits noted above have different performance impact when
implementation environment changes. For example, on distributed memory
systems, methods are normally executed by the CPU that holds the object in
its memory, so explicit inter-CPU communication is required when message
is sent between objet that are held by different CPU. This means that to
decrease message frequency and/or size is crucial to efficiency.

On the other hand, on shared memory systems, every objects are equally
accessible from every CPU, and methods are not tied to any specific CPU.
Thus, the sender and the receiver can execute in single CPU and sim-
ple/efficient procedure calling may substitute more expensive message queue-
ing and scheduling.

5.2 Shared-Memory Implementation of p6

We have implemented p6 on 4CPU SparcServer 1000, which is a shared
memory multiprocessor. Our main goal was to obtain lowest possible message
sending overhead, so the idea noted above (use call/return instead of message
queueing) was extensively used. Below, we explain major design decisions.

We think that the number of abstract states per one object type (class)
will not be so large, because programmers enumerates each of them explicitly.
Thus, we represent state as single 32-bit word, with each bit corresponding to
one state. This representation allows efficient examination of synchronization
condition in p6 (e.g. is the argument in one of listed states?), using single
bitwise “and” operation against precalculated bit mask. This test is repeated
for each of the argument that has associated abstract state constraint.

However, this test must be perfomed atimically without intervention of
other objects (of course). To assure atomicity, there are two design choices:

(a) Each execution entity (an object or a threads) locks the relevant object
and gain exclusive access.

(b) Limit execution entity that does the testing and avoid race.

Scheme (a) will be more efficient when frequency of race condition is relatively
low, because each object simply acquire locks (which are mostly free) and
make judgement themselves. However, when the race becomes frequent,
repeated lock request will degrade overall system performance.

On the contray, scheme (b) in which synchronization tests are solely per-
formed by single “scheduler thread,” each object must communicate to the
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scheduler every time they need synchronization and will result in higher over-
head, but problem on higher race frequency will be alleviated.

Under above consideration, we have chosen the following scheme:

• Each method invocation (with synchronization) obtains locks on rele-
vant arguments one by one and test is made at the place of invocation
— scheme (a). Here, to avoid deadlocks, relevant argument list is first
sorted by their logical address and locks are obtaind in increasing ad-
dress order.

• When all objects are successfully locked and all conditions are satisfied,
all locks are released and direct procedure call is made to the receiver’s
method.

• When any of lock attempts fails, or any of abstract-state condition
is not satisfied, all locks are released and current context along with
invocation information are stored in a memory data structure, and the
data structure is handed to the scheduler thread.

With this mixed scheme, invocations that have low possibility of races are
efficiently handled with simple spin-lock and procedure invocation, while race
or suspension is handled by the scheduler one-by-one basis without exsessive
spin-lock overheads.

5.3 Basic Configuration of p6/SPARC

p6/SPARC is a compiler and runtime systems for p6 that run on SparcServer
1000(50MHz SuperSparc+ × 4CPU). Its overall structure is presented in fig.
5.1.

p6 source is translated to SPARC assembly code by the compiler, and
assembler code is assembled and linked with the runtime library, resulting in
SPARC executable.

The runtime library includes standard library class codes and support
code that serve as start-up driver, scheduler, etc. The runtime library is
written in C. For muti-thread operation, Solaris 2.3 thread library is called
for. Execution framework of p6/SPARC is presented in fig. 5.2.

The structure of objects is shown in fig. 5.3. Top of an object is always
the “mutex” area, which is 24-byte data structure used for Solaris 2.3 thread
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p6 source

p6
compiler

SPARC
assembler

as + ld

a.out

runtime
 library

Figure 5.1: Configuration of p6/SPARC System

syncQ
head

execQ
head

scheduler
thread

executor
threads

ready
frames

suspended
frames

dep.
frames

dep.
frames

Figure 5.2: Runtime Configuration of p6/SPARC System
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library’s spin-lock routines. This area was layed at the top in order to avoid
offset calculation overhead frequent lock/unlock operation.

Below the “mutex” area is the abstract state word, which is 32-bit, as
noted above. Only one bit is set to “1” for each object. Following area is
used to store instance variables, whose layout is determined in class-by-class
basis.

Object
spin lock

state value

slot-
variables

Figure 5.3: Object Structure of p6/SPARC

When a method is executing, state related to the execution (namely argu-
ments, local variables, scratch variables, etc.) are all held by CPU registers.
Usage of SPARC resisters is presented in table 5.1. Ordinary stack frames
are allocated but not explicitly used. SPARC CPU has register window func-
tionality that automatically store/restore CPU resister to/from stack frames
(with help of OS supplied handlers), so our code does not have any explicit
stack access.

Every executing method is holding its current state in the CPU registers,
but when execution must be suspended, these states are stored to a memory
block called “frame” (distinct from SPARC stack frames noted above). In
addition to the register save area, this frame block includes mutex area (like
objects) and other housekeeping information fields. Suspended frames are
put into queues called synchronization queue (syncQ) and execution queue
(execQ). The former contains frames that are waiting for abstarct state syn-
chronizatin constraints to be satisfied. The latter contains ready-to-execute
frames.

The runtime environment contains single scheduler thread and zero or
more executor threads. The scheduler scans the syncQ at some timings
1, and move those frames whose synchronization conditions satisfied to the

1In the current implementation, it scans all frames every time any objest state change
is reported; we are looking for more efficient implementation.
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Table 5.1: Register Usage of p6/SPARC

regs. usage
g0-g6 scratch regs.
g7 resv. for system
o0-o5 call params.
o0 ret. value
o1 ret. status
o6 stack pointer
o7 link register
l0 frame register
l1-l7 local vars.
i0-i5 args. + local vars.
i6 frame pointer
i7 ret. addr.

execQ. Executor threads repeatedly extract ready frame from the execQ, load
the CPU registers, and resume execution. The numbers of executor thread
varies according to the length of the execQ, with specified upper bound (to
avoid resource starvation due to too many number of threads in the system).

Every frame can have associated (dependent) frames. They are either
ready-waiting frame that must wait for execution of the former frame, or
reply-waiting frame that must wait for reply value from the former frame.
When a frame is moved to the execQ, its ready-waiting frame are also moved
to the execQ at the same time 2. A reply frame is moreved to execQ when
the former frame put out reply.

5.4 The Implementation of Send/Suspend/Reply

Basic framework is as presented above, but actual emitted code is more com-
plex. In this section, behavior of actual code is presented in detail. It is some-
what similar to StackThreads[8] in that a message sending is implemented

2It is possible that ready-waiting frame once again have its ready-waiting frame (and
so forth). They are all moved to the execQ on the situation above.
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as a procedure call when possible, but abstract state-based synchronization
and multiple thread control for shared memory multiprocessores are added,
so detail is different.

Firstly, message sending code is as follows:

(1) Store arguments to argument registers(o0～o5).

(2) Call receiver objects’ method using standard “jump subroutine” in-
struction.

(3) Upon return, examine status register (o1) and chose one of following
three processing.

(3a) o1 = 0: Normal return. When there is reply value, the value is held by
o0 register. Continue execution normally.

(3b) o1 = −1: Suspension due to unsatisfied synchronization condition. The
register o0 contains the address of the suspended frame block. Create
this method’s suspension frame, lock the former frame, and register this
frame to the former frame as either ready-waiting frame (in case that
does not require reply value) or reply-waiting frame (in case that do
require reply value), and put the former frame to the syncQ 3. Finally,
store all state information to the frame block, put this frame’s address
to o0, put −1 to o1, and return.

(3c) o1 = 1: Called method started execution but suspended afterwards.
The register o0 contains the address of suspended frame block, and
the frame is locked. If reply value is not needed, simply unlock the
frame and continue execution. If reply is needed, prepare this method’s
frame, link it as the former frame’s reply frame, lock this method’s
frame, unlock the former frame and suspend execution (store all state
information to the frame block, put this frame’s address to o0, put −1
to o1, and return).

Processing at the receiver object’s method entry is as follows:

(1) When the method does not have any abstract state constraints, do
nothing (proceed as an ordinary procedure call).

3Locking is necessary because once the former frame is in the syncQ, scheduler thread
might access the former frame and link to the current frame at any moment.
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(2) Otherwise, load synchronization-relevant arguments and associated masks
onto sequence of paired registers, and sort these pairs to address in-
creasing order. 4

(3) For each pair, lock the argument and test for condition using and in-
struction.

Below here, two cases occur:

(4a) All conditions are satisfied: release all locks and continue execution.

(4b) Any failed lock attempt, or unsatisfied condition: release all locks and
store current context to frame block, put the address of the frame block
to o0, put −1 to o1 and return.

Finally, action of return and reply is explained. return simply put reply
value to o0, zero to 01 and return. reply is likewise, but create current
contexts’ suspend frame and put the frame to the readyQ before returning
(thus sender’s remaining action always gets priority).

5.5 Performance Evaluation

To evaluate efficiency of method invocation, we have measured timings of
basic operations in p6/SPARC. The measurement was done by repeating
method calls (with empty body) in a loop. The result is presented in table
5.2. In this measurement, method invocation without synchronization be-
comes plain procedure call and is very fast (0.2µsec). Compared to this,
method call with synchronization is three times slower but is still good
(0.6µsec). However, such method invariably requires abstract state setting
operation within its method body, which is rather slow (2.2µsec). Most of
this time is the overhead to wake up scheduler thread, and actually is a
conditional variable “signal” call of Solaris 2.3 thread library. This part of
implementation is under review. In case of unsatisfied condition, suspension
processing/scanning frame by the scheduler/resume processing all requires
approx. 10∼30µsec. Eliminating this overhead is also future consideration.

4The number of synchronization-relevant arguments will be small, so the number being

N , N(N−1)
2 serieses of “compare and swap if necessary” operation sequence are generated.
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Table 5.2: Basic Timings of p6/SPARC Operation Calls

Operation Time
Method Call without Synchronization 0.2µsec.
Method Call with Synchronization 0.6µsec.
(Setting Abstract States) 2.2µsec.
Suspension 28.2µsec.
Scheduling 14.7µsec.
Resume from Suspension 21.3µsec.

5.6 Implementation of Other Features

This section describes planned design of currently unimplemented features.
As for selective message sending described in section 3.2, following imple-
mentation is possible:

• The sender actually try to execute message sending for each branch,
and collect the suspended frame (returned due to unsatisfied abstract
state constraints) in a list.

• In case any of message sending was successfully started, discard all
frames and continue executing the successful branch.

• In case all of message sending was delayed, hand collected frame list to
the scheduler for later processing.

• The scheduler periodically scan the list for any frame to become ready
for execution, and resume its execution while discarding all other frames.
Additionally, the scheduler notifies the sender about which branch was
actually chosen.

Another problem lies with respect to substitution of message sending with
more efficient procedure calling; when the sender does not use reply value, the
sender needs not wait for the receiver method to complete. However, when
the procedure calling was used, the sender cannot resume execution until
the receiver returns. This can cause problem when the receiver’s method
require long period to complete. To solve the problem, following strategy is
considered:
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• When calling a method and the sender is not using reply value, a timer
is started.

• When the timer expires while the called method is running, force sus-
pension of the method and store its context to the frame block.

• Put the frame block to the execQ and resume sender’s execution.

Thus, the sender and receiver can execute parallel after the timer expires.
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Chapter 6

Discussion

6.1 Merits and Demerits of State Abstrac-

tion

In the field of software design methodology and software specification, con-
cept of abstract states is not new. However, in these domains, abstract states
are only used on design documents and actual code does not have such data
while the software is running. In our proposal, programming language ex-
plicitly have syntax to represent abstract states, and each objects’ states are
actually stored in objects’ storage. As a consequence, explicit representation
of design decisions on the program code become possible. This also allows
run-time state checking when necessary.

Some programming systems with algebraic specification introduces logical
specification of ADTs, and correspondence between actual (concrete) code
and this specification is maintained through theorem proving techniques.
Such system will assure accurate handling of each objects’ states. On the
other hand, the method proposed in this paper uses finite number of ab-
stract states, and correspondence between objects’ internal (concrete) state
and abstract state is maintained by the implementer. It might increase im-
plementer’s labor, but the clients (programmers that make use of the objects)
need only know about the objects’ abstract states. Moreover, our intuition
is that implementers are already aware of each objects’ abstract states, so
making this information explicit in the language will clarify the code and be
beneficial even to the implementer.

Next, considering state abstraction-based synchronization, the scheme
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might look similar to ordinary guard expression because method invocation
is delayed at the top of the method. However, as the example of reader/writer
problem indicates, method suspension after some computation is also possible
by the use of internal method invocation (with synchronization).

Moreover, in the case of guards, as its expression directly refers object’s
internal state, so the expression itself is not very meaningful to the clients
of the object. On the other hand, abstract states are designed as a part of
objects’ external interface and are meaningful to clients.

The method proposed in this paper allows multiple (and heterogeneous)
object synchronization as a primitive operation. This makes description of
some kind of problems (such as dining philosopher) easy. Let us note that,
popular solution that limit number of philosopher requesting a fork (or al-
ready eating) up to four is quite specific of topology (circular) and numbers
(five) of philosophers and forks. On the contrary, our method can easily de-
scribe arbitrarily (for example, three fork per each philosopher and random
topology) configuration.

6.2 Related Works

In the area of concurrent object-oriented programming languages, many re-
search are done with respect to reuse of code through inheritance. Among
them are the method that use enabled set[4][5]. This set values (set of method
names that can be accepted at some moment) can be considered as an an-
other representation of abstract states. Moreover, Matsuoka et. al.[7] are
using these set values actually as states and describes transition between
these states.

However, in these works, the main focus is to enable/disable each methods
with inheritance frameworks. Features such as multiple object synchroniza-
tion is not provided either.

In ActorSpace[9] model, each object may have associated “attribute” val-
ues, and synchronization condition can refer to those attributes. These “at-
tributes” can act as as abstract states. In fact, dining philosopher example
presented in [9] is essentially same as those presented in this paper. However,
main focus of ActorSpace model is to separate objects’ synchronization con-
dition from objects themselves, and attributes are not regarded as something
related to objects’ internal state.

Regular Type[10] is a work to formalize method enabling/disabling using
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state transition, thus it have some similarity with the method proposed in this
paper. However, the work does not speak about implementation in actual
language, and neither handles multiple object synchronization.

6.3 Summary and Future Works

In this paper we have proposed state abstraction-based synchronization, and
also presented an object-oriented programming language p6, whose sole syn-
chronization scheme is state abstraction-based one. The design of a p6 im-
plementation on shared-memory multiprocessor and its performance is also
reported. Our experience is that state-abstraction based synchronization is
simple, powerful and comprehensive, and can be implemented efficiently.

Future works include investigation of theorycal background of this syn-
chronization scheme, relation with inheritance mechanism, and experience
on development of larger parallel systems in this framework.
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